首页> 外文OA文献 >Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks
【2h】

Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

机译:振荡驱动的尖峰时序相关塑性允许在抑制性中间神经网络中进行多重重叠模式识别

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in plastic interneuron networks could be critical for the generation of sparse representations of information in excitatory neuron populations falling under their control.
机译:大脑执行的大多数操作都需要学习复杂的信号模式,以供将来识别,检索和重用。尽管人们认为学习依赖于多种形式的长期突触可塑性,但后者对模式识别的贡献仍知之甚少。在这里,我们使用了带有侧向抑制作用的传入兴奋性神经元和中间神经元的简单模型,再现了从小脑到皮质柱的许多大脑区域中发现的网络拓扑。当在兴奋性输入突触和抑制性中间神经元-中间神经元突触上具有依赖于尖峰时序的可塑性(STDP)时,中间神经元会迅速学习复杂的输入模式。有趣的是,塑性诱导要求将网络带入θ频带振荡,从而设置驱动STDP所需的内部相位基准。抑制性可塑性有效地在可用的中间神经元之间分配了多个模式,从而允许同时检测多个重叠模式。固有兴奋性中增加了可塑性,使系统更加坚固,可以根据各种输入模式进行自我调整和重新缩放。横向抑制连接中的可塑性与抑制性中间神经元中的稳态机制相结合,优化了相互信息(MI)传递。在塑料神经元网络中存储多种复杂模式对于在受其控制的兴奋性神经元群体中生成稀疏信息表示可能至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号