首页> 外文OA文献 >Data Analysis of Medical Images: CT, MRI, Phase Contrast X-ray and PET
【2h】

Data Analysis of Medical Images: CT, MRI, Phase Contrast X-ray and PET

机译:医学图像的数据分析:CT,mRI,相位对比X射线和pET

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Data analysis of medical images is an important and growing area, as systems for imaging becomes still more available and complex. The goal of the thesis is to demonstrate solutions to data analysis problems in a cross disciplinary context. Further, to develop methods for analysis of new imaging modalities and to combine cross disciplinary knowledge from various fields to find new solutions to existing problems.More speciffically the thesis shows segmentation of images, classification and statistics used on a variety of quite different problems. Active Appearance models, Chan-Vese and graph-cut has been used, as well as a variety of statistical tools centred on the General Linear Model.The point of departure for the thesis is the NanoGuide project, in which gel based x-ray markers for use in radiotherapy has been developed. Two different types of gels has been analysed using segmentation of micro-CT images followed by a statistical analysis of homogeneity, contrast, degradation, and other qualities. By combining knowledge from the different professions in the project, a new application for one of the developed gels - in-vivo dosimetry in radiotherapy - has been studied.Analysis of differences between groups and of correlations between brain regions and cognitive tests in alzheimers patients is another contribution. Segmentation of fat in abdominal MRI-scans has also been studied and a robust algorithm based on graph-cut is presented.A relatively new modality phase-contrast x-ray and dark-field has shown promise for diagnosis of a variety of diseases in the lungs. A classification algorithm for differentiation of healthy, emphysematous and fibrotic lung tissue on pixel level is presented.
机译:随着成像系统变得更加可用和复杂,医学图像的数据分析是一个重要且不断发展的领域。本文的目的是在跨学科的背景下证明数据分析问题的解决方案。进一步地,开发分析新成像方式的方法,并结合来自各个领域的跨学科知识,以找到解决现有问题的新方法。更具体地讲,本文显示了在各种完全不同的问题上使用的图像分割,分类和统计。使用了Active Appearance模型,Chan-Vese和graph-cut,以及以“一般线性模型”为中心的各种统计工具。本文的出发点是NanoGuide项目,其中基于凝胶的X射线标记已经开发出用于放射治疗的药物。已经使用微CT图像分割对两种不同类型的凝胶进行了分析,然后对同质性,对比度,降解和其他质量进行了统计分析。通过结合项目中不同专业的知识,研究了一种已开发的凝胶的新应用-放射治疗中的体内剂量测定法。阿尔茨海默氏症患者之间的组间差异以及大脑区域与认知测试之间的相关性分析是另一个贡献。还研究了腹部MRI扫描中的脂肪分割,并提出了一种基于图割的鲁棒算法。相对较新的模式相衬X射线和暗场显示了对多种疾病进行诊断的希望。肺。提出了一种在像素水平上区分健康,气肿和纤维化肺组织的分类算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号