首页> 外文OA文献 >Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning.
【2h】

Measuring and Modelling Delays in Robot Manipulators for Temporally Precise Control using Machine Learning.

机译:利用机器学习测量和建模机器人操纵器的时间精确控制延迟。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Latencies and delays play an important role in temporally precise robot control. During dynamic tasks in particular, a robot has to account for inherent delays to reach manipulated objects in time. The different types of occurring delays are typically convoluted and thereby hard to measure and separate. In this paper, we present a data-driven methodology for separating and modelling inherent delays during robot control. We show how both actuation and response delays can be modelled using modern machine learning methods. The resulting models can be used to predict the delays as well as the uncertainty of the prediction. Experiments on two widely used robot platforms show significant actuation and response delays in standard control loops. Predictive models can, therefore, be used to reason about expected delays and improve temporal accuracy during control. The approach can easily be used on different robot platforms.
机译:延迟和延迟在时间上精确的机器人控制中起着重要作用。特别是在动态任务期间,机器人必须考虑固有的延迟才能及时到达操作对象。不同类型的发生的延迟通常很复杂,因此很难测量和分离。在本文中,我们提出了一种数据驱动的方法,用于对机器人控制期间的固有延迟进行分离和建模。我们展示了如何使用现代机器学习方法对致动和响应延迟进行建模。所得的模型可用于预测延迟以及预测的不确定性。在两个广泛使用的机器人平台上进行的实验表明,在标准控制回路中,执行和响应延迟明显。因此,预测模型可用于推理预期的延迟并提高控制期间的时间精度。该方法可以轻松地在不同的机器人平台上使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号