首页> 外文OA文献 >A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models
【2h】

A plant wide aqueous phase chemistry model describing pH variations and ion speciation/pairing in wastewater treatment process models

机译:植物宽水相化学模型,描述废水处理过程模型中的pH变化和离子形态/配对

摘要

There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics (Batstone et al., 2012). Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems (Ikumi et al., 2014). In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module involves extensive consideration of non-ideality by including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies (Solon et al., 2015). Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 (Henze et al., 2000) comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions (Flores-Alsina et al., 2012). The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) (Batstone et al., 2002; Rosen et al., 2006) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated by implementing the aqueous phase chemistry module in some of the most frequently used WWTP process simulation models. Finally, it is shown how traditional wastewater modelling studies can be complemented with a rigorous description of aqueous phase and ion chemistry (pH, speciation, complexation).
机译:在多年专注于生物动力学之后,废水处理厂(WWTP)建模社区对正确描述物理化学过程的兴趣日益浓厚(Batstone et al。,2012)。的确,未来的建模需求(例如全厂磷(P)描述)在代表活性污泥(AS)/厌氧消化(AD)系统中的阳离子/阴离子行为时,需要较大但不可避免的复杂程度(Ikumi等人,2014年)。在本文中,介绍了描述pH值变化以及离子形态/配对的全厂范围水相化学模块,并将其与行业标准模型连接。该模块通过包括离子活性而不是摩尔浓度和复杂的离子对,广泛地考虑了非理想性。一般均衡被公式化为一组微分代数方程(DAE)而不是普通微分方程(ODE),以降低系统的整体刚度,从而提高仿真速度。此外,牛顿-拉夫森算法的多维版本被应用于处理现有的多个代数相互依赖关系(Solon等人,2015)。模拟结果显示,当通过活性污泥模型(ASM)1、2d和3(Henze et al。,2000)描述生物营养去除(BNR)时,比较了氮去除(WWTP1)和氮磷结合的性能时,pH值预测厌氧/缺氧/好氧条件下的污水处理厂(WWTP2)配置(Flores-Alsina et al。,2012)。相同的框架在1号厌氧消化模型(ADM1)(WWTP3)的2号基准仿真模型(BSM2)版本中也已实现(Batstone等,2002; Rosen等,2006)。不同阳离子/阴离子负载下的pH值。通过这种方式,通过在一些最常用的WWTP过程模拟模型中实施水相化学模块,证明了所提出方法的一般适用性/灵活性。最后,它展示了如何通过对水相和离子化学(pH,形态,络合)的严格描述来补充传统废水建模研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号