首页> 外文OA文献 >Objective Classification of Rainfall in Northern Europe for Online Operation of Urban Water Systems Based on Clustering Techniques
【2h】

Objective Classification of Rainfall in Northern Europe for Online Operation of Urban Water Systems Based on Clustering Techniques

机译:基于聚类技术的北欧城市水系统在线运行降雨量客观分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study evaluated methods for automated classification of rain events into groups of "high" and "low" spatial and temporal variability in offline and online situations. The applied classification techniques are fast and based on rainfall data only, and can thus be applied by, e.g., water system operators to change modes of control of their facilities. A k-means clustering technique was applied to group events retrospectively and was able to distinguish events with clearly different temporal and spatial correlation properties. For online applications, techniques based on k-means clustering and quadratic discriminant analysis both provided a fast and reliable identification of rain events of "high" variability, while the k-means provided the smallest number of rain events falsely identified as being of "high" variability (false hits). A simple classification method based on a threshold for the observed rainfall intensity yielded a large number of false hits and was thus outperformed by the other two methods.
机译:这项研究评估了离线和在线情况下降雨事件自动分类为“高”和“低”时空变异性的方法。所应用的分类技术是快速的并且仅基于降雨数据,并且因此可以由例如水系统运营商来应用以改变其设施的控制模式。 k均值聚类技术可追溯地用于对事件进行分组,并且能够区分时间和空间相关性明显不同的事件。对于在线应用,基于k均值聚类和二次判别分析的技术都可以快速,可靠地识别“高”变异性的降雨事件,而k均值提供了最少数量的被错误识别为“高”变异性的降雨事件。差异(错误命中)。一种简单的基于观测到的降雨强度阈值的分类方法会产生大量的错误命中,因此在其他两种方法中表现都较差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号