首页> 外文OA文献 >Application of a Mechanistic Model as a Tool for On-line Monitoring of Pilot Scale Filamentous Fungal Fermentation Processes - The Importance of Evaporation Effects:Mechanistic model for pilot scale monitoring
【2h】

Application of a Mechanistic Model as a Tool for On-line Monitoring of Pilot Scale Filamentous Fungal Fermentation Processes - The Importance of Evaporation Effects:Mechanistic model for pilot scale monitoring

机译:应用机械模型作为中试丝状真菌发酵过程在线监测的工具 - 蒸发效应的重要性:中试规模监测的机理模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A mechanistic model-based soft sensor is developed and validated for 550L filamentous fungus fermentations operated at Novozymes A/S. The soft sensor is comprised of a parameter estimation block based on a stoichiometric balance, coupled to a dynamic process model. The on-line parameter estimation block models the changing rates of formation of product, biomass, and water, and the rate of consumption of feed using standard, available on-line measurements. This parameter estimation block, is coupled to a mechanistic process model, which solves the current states of biomass, product, substrate, dissolved oxygen and mass, as well as other process parameters including kLa, viscosity and partial pressure of CO2. State estimation at this scale requires a robust mass model including evaporation, which is a factor not often considered at smaller scales of operation.The model is developed using a historical dataset of eleven batches from the fermentation pilot plant (550L) at Novozymes A/S. The model is then implemented on-line in 550L fermentation processes operated at Novozymes A/S in order to validate the state estimator model on fourteen new batches utilizing a new strain. The product concentration in the validation batches was predicted with an average root mean sum of squared error (RMSSE) of 16.6%. In addition, calculation of the Janus coefficient for the validation batches shows a suitably calibrated model. The robustness of the model prediction is assessed with respect to the accuracy of the input data. Parameter estimation uncertainty is also carried out. The application of this on-line state estimator allows for on-line monitoring of pilot scale batches, including real-time estimates of multiple parameters which are not able to be monitored on-line. With successful application of a soft sensor at this scale, this allows for improved process monitoring, as well as opening up further possibilities for on-line control algorithms, utilizing these on-line model outputs. This article is protected by copyright. All rights reserved
机译:开发了基于机械模型的软传感器,并针对Novozymes A / S进行的550L丝状真菌发酵进行了验证。软传感器由基于化学计量平衡的参数估计模块组成,并耦合到动态过程模型。在线参数估计模块使用标准的可用在线测量方法来模拟产品,生物质和水的形成速率变化以及饲料消耗速率。该参数估计模块与机械过程模型耦合,该模型可求解生物质,产品,底物,溶解氧和质量的当前状态,以及其他过程参数,包括kLa,CO2的粘度和分压。这种规模的状态估计需要一个健壮的包括蒸发在内的质量模型,这是在较小规模的运营中不经常考虑的因素。该模型是使用来自Novozymes A / S的发酵中试工厂(550L)的11批次的历史数据集开发的。然后在Novozymes A / S上运行的550L发酵过程中在线实施该模型,以验证使用新菌株的14个新批次的状态估计器模型。预测验证批次中的产品浓度,平均均方根误差的均方根(RMSSE)为16.6%。此外,验证批次的Janus系数的计算显示了经过适当校准的模型。相对于输入数据的准确性评估模型预测的鲁棒性。还进行参数估计不确定性。该在线状态估计器的应用允许对中试规模批次进行在线监视,包括无法在线监视的多个参数的实时估计。通过成功应用这种规模的软传感器,可以改善过程监控,并利用这些在线模型输出为在线控制算法提供更多可能性。本文受版权保护。版权所有

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号