首页> 外文OA文献 >Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies
【2h】

Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies

机译:用于增强复合材料机械性能的纳米结构界面:计算机械力学研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational micromechanical studies of the effect of nanostructuring and nanoengineering of interfaces, phase and grain boundaries of materials on the mechanical properties and strength of materials and the potential of interface nanostructuring to enhance the materials properties are reviewed. Several groups of materials (composites, nanocomposites, nanocrystalline metals, wood) are considered with view on the effect of nanostructured interfaces on their properties. The structures of various nanostructured interfaces (protein structures and mineral bridges in biopolymers in nacre and microfibrils in wood; pores, interphases and nanoparticles in fiber/matrix interfaces of polymer fiber reinforced composites and nanocomposites; dislocations and precipitates in grain boundaries of nanocrystalline metals) and the methods of their modeling are discussed. It is concluded that nanostructuring of interfaces and phase boundaries is a powerful tool for controlling the material deformation and strength behavior, and allows to enhance the mechanical properties and strength of the materials. Heterogeneous interfaces, with low stiffness leading to the localization of deformation, and nanoreinforcements oriented normally to the main reinforcing elements can ensure the highest damage resistance of materials.
机译:审查了计算的微观力学研究界面的纳米结构和纳米工程,材料的相和晶界对材料的机械性能和强度的影响,以及界面纳米结构增强材料性能的潜力。考虑到纳米结构界面对其性能的影响,考虑了几类材料(复合材料,纳米复合材料,纳米晶体金属,木材)。各种纳米结构界面的结构(珍珠质中生物聚合物中的蛋白质结构和矿物桥以及木材中的微纤维;聚合物纤维增强复合材料和纳米复合材料的纤维/基体界面中的孔,中间相和纳米粒子;纳米晶金属的晶界中的位错和沉淀物)和讨论了它们建模的方法。结论是,界面和相界的纳米结构是控制材料变形和强度行为的有力工具,并且可以增强材料的机械性能和强度。异质界面,低硬度导致变形的局限性,以及通常指向主要增强元件的纳米增强材料,可以确保材料具有最高的抗破坏性。

著录项

  • 作者

    Mishnaevsky Leon;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号