首页> 外文OA文献 >Fluorescent silicon carbide materials for white LEDs and photovoltaics
【2h】

Fluorescent silicon carbide materials for white LEDs and photovoltaics

机译:用于白光LED和光伏器件的荧光碳化硅材料

摘要

Energy efficient materials solutions will be key figures in progressive energy saving applications. We explore a materials growth concept of fluorescent wide bandgap semiconductors for white and infrared LEDs as well as solar cells. This is an emerging scientific field which has not previously been explored.The applications include a white LED for general lighting in which the conversion is based on the semiconductor instead of using phosphors. The result is an LED technology which does not need rare earth metals and has a pure white light. In efficient fluorescent materials, the absorption may be very efficient. This leads to the concept of using wide bandgap fluorescent materials for solar cells. The efficiency is increased by introducing certain dopants, so that solar absorption is increased in a single material. This is an advantage to multijunction solar cells where there are electron losses at each junction.We have applied novel methods to produce the fluorescent materials [1]. Thick doped silicon carbide layers may be grown to produce a voluminous medium from which the dopants act to produce a donor to acceptor pair recombination mechanism. In hexagonal silicon carbide the luminescence appears in the visible region which is used to produce a white LED with pure white light without need of phosphors [2]. The cubic silicon carbide polytype is challenging to master, and we have explored the growth of this crystal structure. It has a lower bandgap, and by a similar doping concept the luminescence appears in the infrared region in a broad range from 700 to 1100 nm. This potentially can be used to develop an infrared LED for de-icing in wind power and airplanes, or medical applications. Further on, a very efficient solar cell material can be investigated by studying the impurity effect in cubic silicon carbide. The impurity photovoltaic effect could lead to devices with efficiencies comparable to those of tandem systems, and could open a new road for very-high-efficiency solar cells. Such high performance can be reached only if the host material has a large energy gap, like cubic silicon carbide [3,4].
机译:节能材料解决方案将是逐步节能应用中的关键指标。我们探索了用于白色和红外LED以及太阳能电池的荧光宽带隙半导体的材料生长概念。这是一个从未被探索过的新兴科学领域,其应用包括用于普通照明的白色LED,其中转换基于半导体而不是使用磷光体。结果是不需要稀土金属且具有纯白光的LED技术。在有效的荧光材料中,吸收可能非常有效。这导致了将宽带隙荧光材料用于太阳能电池的概念。通过引入某些掺杂剂可以提高效率,从而在单一材料中增加太阳光的吸收。这对于多结太阳能电池而言是一个优势,因为在每个结处都有电子损耗。我们已经应用了新颖的方法来生产荧光材料[1]。可以生长厚的掺杂的碳化硅层以产生大量的介质,掺杂剂从该介质中起作用以产生供体-受体对重组机理。在六角形碳化硅中,发光出现在可见区域,该发光区域用于产生具有纯白光的白光LED,而无需磷光体[2]。立方碳化硅多型体很难掌握,我们已经探索了这种晶体结构的生长。它具有较低的带隙,并且通过类似的掺杂概念,发光出现在红外区域的700至1100 nm的宽范围内。这有可能被用于开发用于风能,飞机或医疗应用中除冰的红外LED。此外,可以通过研究立方碳化硅中的杂质效应来研究非常有效的太阳能电池材料。杂质光伏效应可能会导致器件的效率与串联系统相当,并可能为非常高效的太阳能电池开辟一条新路。仅当基质材料具有较大的能隙时(例如立方碳化硅[3,4]),才能达到如此高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号