The dynamic equations governing the cross-coupled quadrature harmonic oscillator are derived assuming quasi-sinusoidal operation. This allows for an investigation of the previously reported tradeoff between close-to-carrier phase noise and quadrature precision. The results explain how nonlinearity in the coupling transconductances, in conjunction with a finite amplitude relaxation time and de-tuning of the individual oscillators, cause close-to-carrier AM-to-PM noise conversion. A discussion is presented of how the theoretic results translate into design rules for quadrature oscillator ICs. SPECTRE RF simulations verify the developed theory.
展开▼