首页> 外文OA文献 >Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation
【2h】

Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation

机译:利用横向超声波束聚焦和互相关估计血流速度矢量

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Modern ultrasound scanners estimate the blood velocity by tracking the movement of the blood scatterers along the ultrasound beam. This is done by emitting pulsed ultrasound fields and finding the shift in position from pulse to pulse by correlating the received signals. Only the velocity component along the beam direction is found, and this is a serious limitation in the current scanners, since most blood vessels are parallel to the skin surface. A method to find the velocity across the vessel has been suggested by Bonnefous (1988). Here a number of parallel receive beams are measured and used in a correlation estimator to find the velocity across the beam. This approach is extended in this paper by making beamforming along the direction of the flow. A fairly broad beam is emitted and the received signal is then focused along a selected direction. This direction can be along the ultrasound beam or across it or in any direction to the beam. The focused lines, thus, follow the flow and a cross-correlation of lines from different pulses can find the movement of the blood particles between pulse emissions and, thus, the blood velocity. The new approach is investigated using the Field II simulation program. Simulations are shown for a parabolic velocity profile for flow-to-beam angles of 30, 45, 60, and 90 degrees using a 64 elements linear array with a center frequency of 3 MHz, a pitch of 0.3 mm, and an element height of 5 mm. The peak velocity in the parabolic flow was 0.5 m/s, and the pulse repetition frequency was 3.5 kHz. Using four pulse-echo lines, the parabolic flow profile was found with a standard deviation of 0.028 m/s at 60 degrees and 0.092 m/s at 90 degrees (transverse to the ultrasound beam), corresponding to accuracies of 5.6% and 18.4%. Using ten lines gave standard deviations of 0.021 m/s and 0.089 m/s, respectively, corresponding to accuracies of 4.2% and 17.8%
机译:现代超声扫描仪通过跟踪血液散射体沿超声束的运动来估计血流速度。这是通过发射脉冲超声场并通过使接收到的信号相关找到脉冲之间的位置偏移来完成的。仅发现沿光束方向的速度分量,这在当前的扫描仪中是一个严重的限制,因为大多数血管都与皮肤表面平行。 Bonnefous(1988)提出了一种确定船上速度的方法。在这里,测量了许多平行的接收波束,并在相关估计器中使用它们来查找波束两端的速度。本文通过沿流动方向进行波束成形扩展了这种方法。发射相当宽的光束,然后沿所选方向聚焦接收到的信号。该方向可以沿着超声波束或穿过超声波束,或沿超声波束的任何方向。因此,聚焦的线跟随流动,并且来自不同脉冲的线的互相关可以发现在脉冲发射之间的血液颗粒的运动以及因此在血液速度之间的运动。使用Field II仿真程序研究了新方法。使用中心频率为3 MHz,节距为0.3 mm,单元高度为64的64元素线性阵列,显示了30、45、60和90度的流束角抛物线速度曲线的仿真。 5毫米抛物线流动的峰值速度为0.5 m / s,脉冲重复频率为3.5 kHz。使用四条脉冲回波线,发现抛物线流动剖面在60度时的标准偏差为0.028 m / s,在90度时的标准偏差为0.092 m / s(横向于超声波束),对应的准确度分别为5.6%和18.4% 。使用十条线给出的标准偏差分别为0.021 m / s和0.089 m / s,对应于4.2%和17.8%的精度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号