首页> 外文OA文献 >Linear Regression on Sparse Features for Single-Channel Speech Separation
【2h】

Linear Regression on Sparse Features for Single-Channel Speech Separation

机译:单通道语音分离稀疏特征的线性回归

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work we address the problem of separating multiple speakers from a single microphone recording. We formulate a linear regression model for estimating each speaker based on features derived from the mixture. The employed feature representation is a sparse, non-negative encoding of the speech mixture in terms of pre-learned speaker-dependent dictionaries. Previous work has shown that this feature representation by itself provides some degree of separation. We show that the performance is significantly improved when regression analysis is performed on the sparse, non-negative features, both compared to linear regression on spectral features and compared to separation based directly on the non-negative sparse features.
机译:在这项工作中,我们解决了从单个麦克风录音中分离多个扬声器的问题。我们建立了一个线性回归模型,用于基于从混合中得出的特征来估计每个说话者。所采用的特征表示是根据预学习的说话者相关字典对语音混合进行的稀疏,非负编码。先前的工作表明,此特征表示本身提供了一定程度的分离。我们显示,与基于光谱特征的线性回归和基于非负稀疏特征的分离相比,对稀疏,非负特征进行回归分析时,性能得到了显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号