首页> 外文OA文献 >Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models
【2h】

Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models

机译:基于markov切换自回归模型的海上风电波动自适应建模与预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wind power production data at temporal resolutions of a few minutes exhibit successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour with an approach relying on Markov-switching autoregressive (MSAR) models. An appropriate parameterization of the model coefficients is introduced, along with an adaptive estimation method allowing accommodation of long-term variations in the process characteristics. The objective criterion to be recursively optimized is based on penalized maximum likelihood, with exponential forgetting of past observations. MSAR models are then employed for one-step-ahead point forecasting of 10 min resolution time series of wind power at two large offshore wind farms. They are favourably compared against persistence and autoregressive models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill.
机译:在几分钟的时间分辨率下的风力发电数据显示出具有各种动态性质和大小的波动的连续周期,这不能(到目前为止)由某些解释变量的演变来解释。我们的建议是采用一种依赖于马尔可夫切换自回归(MSAR)模型的方法来捕获这种状态切换行为。引入了模型系数的适当参数化以及允许适应过程特性长期变化的自适应估计方法。要进行递归优化的客观标准是基于惩罚的最大似然率,而对过去的观察结果则是指数级的遗忘。然后,将MSAR模型用于两个大型海上风电场的风力发电10µmin分辨率时间序列的提前一步预测。与持久性和自回归模型相比,它们具有优势。最终表明,MSAR模型的主要兴趣在于其生成技能明显更高的区间/密度预测的能力。

著录项

  • 作者

    Pinson Pierre; Madsen Henrik;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号