首页> 外文OA文献 >General approach to high power, coherent visible and ultraviolet light sources
【2h】

General approach to high power, coherent visible and ultraviolet light sources

机译:高功率,相干可见光和紫外光源的一般方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The main goal of this project is to develop a generic approach to synthesise any wavelength in the visible and UV spectral region based on sum frequency generation. The approach is based on a hybrid system combining solid state and semiconductor technology. The generation of light in the UV spectral region require nonlinear materials with a transparency range extending into the ultraviolet, the ability to sustain high photon energies and with the ability to obtain phasematching for the desired nonlinear conversion process. In this project experiments are conducted using three differently co-doped GdCOB crystals. The crystals are optimized for noncritical phasematching in the blue-UV spectral region through co-doping with Lu and Sc, a nonlinear coefficient for these crystals of 0.78, 0.81 and 0.89 pm/V are measured, which is comparable to LBO. The ability to adjust the noncritical phasematching by co-doping of these crystals makes them promising candidates for generation of light in the blue-UV region. A novel method for cavity dumping based on nonlinear frequency conversion is investigated. A high finesse laser is constructed with an intracavity nonlinear material inserted in a beam waist. The nonlinear material is phasematched to support sum frequency generation between the 1342nm circulating field in the cavity and a single pass passively Q-Switched 1064nm laser, effectively converting the circulating power whenever a single pass pulse is present. Furthermore the Q-Switched laser can easily be frequency doubled in a single pass configuration, therefore the nonlinear cavity dumping approach is suggested for the generation of 340nm UV light, using 532nm pulses to cavity dump a 946nm Nd:YAG laser. Furthermore experiments are conducted tripling a Q-switched 1064nm laser to 355nm by cascaded second harmonic and sum frequency generation using periodically poled KTP and BBO for the SHG and SFG process, respectively. The 355nm light is used to promote different photo induced reactions. The main limitation of reaching any desired wavelength in the visible spectrum using sum frequency generation is the limited laser lines available from efficient solid state lasers. One fundamental way to overcome this limitation is to use semiconductor lasers to provide one of the fundamental fields. The problem of using semiconductor lasers for nonlinear frequency conversion has previously been the lag of coherence of these devices. This problem can, however, to a large extent be solved using external cavity tapered diode lasers, which allows for the generation of coherent radiation at the watt power level. Using differently doped semiconductor materials these devices can potentially cover the wavelength range from the red and into the infrared spectral range. These devices are very efficient, however, the available devices in the visible region are still very inefficient, therefore a generic approach using high finesse solid state lasers with intracavity nonlinear materials and single pass tapered diode was sought to cover the shorter wavelength range. In this project more then 300mW of 488nm power is generated by direct sum frequency mixing of a solid state laser and a single pass external cavity tapered diode laser. The performance of the device is compared to systems where the output of the tapered diode laser is spatially filtered and to an all solid state laser system based on mixing with a single frequency Ti:Sapphire laser. Finally experiments with a semiconductor disk laser used as the high finesse cavity laser and sum frequency mixing with a single pass solid state laser is coniv ducted. These experiments show that it is possible to design systems exploiting the benefits of semiconductor based lasers and nonlinear sum frequency generation to cover large parts of the optical spectrum, which has previously been difficult to access due to the lag of efficient, coherent light sources
机译:该项目的主要目标是开发一种通用的方法,以基于总和频率的生成来合成可见光和紫外线光谱区域中的任何波长。该方法基于结合了固态和半导体技术的混合系统。 UV光谱区域中光的产生需要非线性材料,该材料的透明范围延伸到紫外线中,具有维持高光子能量的能力,并具有获得所需非线性转换过程的相位匹配的能力。在该项目中,使用三种不同的共掺杂GdCOB晶体进行了实验。通过与Lu和Sc共掺杂,优化了晶体的蓝光-UV光谱区域中的非关键相位匹配,测得这些晶体的非线性系数为0.78、0.81和0.89 pm / V,与LBO相当。通过共掺杂这些晶体来调节非关键相位匹配的能力使其成为有希望的候选物,以在蓝色-UV区产生光。研究了一种基于非线性频率转换的腔体倾卸新方法。用腔内非线性材料插入光束腰部构造高精细激光器。非线性材料的相位匹配可支持腔体中1342nm循环场与单通道被动Q开关1064nm激光器之间的总频率生成,从而在存在单通道脉冲时有效地转换循环功率。此外,在单通配置中,Q开关激光器可以很容易地倍频,因此建议使用非线性腔体倾倒方法来产生340nm紫外光,该方法使用532nm脉冲腔体倾倒946nm Nd:YAG激光器。此外,通过分别使用周期性极化的KTP和BBO分别针对SHG和SFG工艺通过级联的二次谐波和总和频率生成,将调Q的1064nm激光器的三倍频程提高到355nm,进行了实验。 355nm的光用于促进不同的光诱导反应。使用总和频率生成来达到可见光谱中任何所需波长的主要限制是有效固态激光器可用的有限激光线。克服此限制的一种基本方法是使用半导体激光器来提供基本领域之一。以前,使用半导体激光器进行非线性频率转换的问题一直是这些设备的相干性滞后。但是,使用外腔锥形二极管激光器可以在很大程度上解决该问题,该激光器允许以瓦特功率水平产生相干辐射。使用不同掺杂的半导体材料,这些设备可以潜在地覆盖从红色到红外光谱范围的波长范围。这些设备非常有效,但是可见区域中可用的设备仍然非常低效,因此,人们寻求一种使用高精细度固态激光器和腔内非线性材料以及单程锥形二极管的通用方法来覆盖较短的波长范围。在该项目中,固态激光器和单程外腔锥形二极管激光器的直接和频混合产生了300mW的488nm功率。将该器件的性能与锥形二极管激光器的输出进行空间滤波的系统以及基于与单频Ti:Sapphire激光器混合的全固态激光器系统进行了比较。最后,进行了半导体圆盘激光器作为高精密腔激光器的实验,并提出了单次固态激光器的总和频率混合。这些实验表明,有可能设计出利用基于半导体的激光器和非线性总和频率产生的优势来覆盖大部分光谱的系统,而由于高效,相干光源的滞后,以前很难访问该光谱

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号