首页> 外文OA文献 >Extending and applying active appearance models for automated, high precision segmentation in different image modalities
【2h】

Extending and applying active appearance models for automated, high precision segmentation in different image modalities

机译:扩展和应用主动外观模型,以便在不同的图像模态下进行自动化,高精度分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we present a set of extensions to the deformable template model: Active Appearance Model (AAM) proposed by Cootes et al. AAMs distinguish themselves by learning a priori knowledge through observation of shape and texture variation in a training set. This is used to obtain a compact object class description, which can be employed to rapidly search images for new object instances. The proposed extensions concern enhanced shape representation, handling of homogeneous and heterogeneous textures, refinement optimization using Simulated Annealing and robust statistics. Finally, an initialization scheme is designed thus making the usage of AAMs fully automated. Using these extensions it is demonstrated that AAMs can segment bone structures in radiographs, pork chops in perspective images and the left ventricle in cardiovascular magnetic resonance images in a robust, fast and accurate manner. Subpixel landmark accuracy was obtained in two of the three cases.
机译:在本文中,我们提出了一组可变形模板模型的扩展:Cootes等人提出的主动外观模型(AAM)。 AAM通过在训练集中观察形状和纹理变化来学习先验知识来区分自己。这用于获取紧凑的对象类描述,该描述可用于快速搜索图像以查找新的对象实例。拟议的扩展涉及增强的形状表示,同质和异质纹理的处理,使用模拟退火的优化优化和鲁棒统计。最后,设计了一个初始化方案,从而使AAM的使用完全自动化。使用这些扩展,证明了AAM可以以强大,快速和准确的方式分割X线照片中的骨骼结构,透视图中的猪排和心血管磁共振图像中的左心室。在三种情况中的两种情况下获得了亚像素界标精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号