首页> 外文OA文献 >A multi-level variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem
【2h】

A multi-level variable neighborhood search heuristic for a practical vehicle routing and driver scheduling problem

机译:用于实际车辆路线和驾驶员调度问题的多级可变邻域搜索启发式算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper addresses an integrated vehicle routing and driver scheduling problem arising at the largest fresh meat producer in Denmark. The problem consists of a one-week planning horizon, heterogeneous vehicles, and drivers with predefi ned work regulations. These regulations include, among other things, predefined workdays, fixed starting time, maximum weekly working duration, break rule. The objective is to minimize the total delivery cost. The real-life case study is fi rst introduced and modelled as a mixed integer linear program. A multilevel variable neighborhood search heuristic is then proposed for the problem. At the first level, the problem size is reduced through an aggregation procedure. At the second level, the aggregated weekly planning problem is decomposed into daily planning problems, each of which is solved by a variable neighborhood search. At the last level, the solution of the aggregated problem is expanded to that of the original problem. The method is implemented and tested on real-life data consisting of up to 2000 orders per week. Computational results show that the aggregation procedure and the decomposition strategy are very effective in solving this large scale problem, and our solutions are superior to the industrial solutions given the constraints considered in this work.
机译:本文解决了丹麦最大的鲜肉生产商中出现的综合车辆路线和驾驶员调度问题。问题包括一个为期一周的规划期,异构车辆以及具有预定工作规定的驾驶员。这些法规除其他事项外还包括预定义的工作日,固定的开始时间,每周的最长工作时间,休息时间规则。目的是使总交付成本最小化。实际案例研究是首次引入并建模为混合整数线性程序。然后针对该问题提出了多级变量邻域搜索启发式算法。在第一级,通过聚合过程来减少问题的大小。在第二层,将汇总的每周计划问题分解为每日计划问题,通过可变邻域搜索解决每个问题。在最后一级,将汇总问题的解决方案扩展到原始问题的解决方案。该方法在每周多达2000个订单的实际数据上实现和测试。计算结果表明,聚集程序和分解策略在解决此大规模问题方面非常有效,考虑到本文中的约束条件,我们的解决方案优于工业解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号