首页> 外文OA文献 >Integration of Temporal Abstraction and Dynamic Bayesian Networks in Clinical Systems. A preliminary approach
【2h】

Integration of Temporal Abstraction and Dynamic Bayesian Networks in Clinical Systems. A preliminary approach

机译:时态抽象与动态贝叶斯网络在临床系统中的集成。初步方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstraction of temporal data (TA) aims to abstract time-points into higher-level interval concepts and to detect significant trends in both low-level data and abstract concepts. TA methods are used for summarizing and interpreting clinical data. Dynamic Bayesian Networks (DBNs) are temporal probabilistic graphical models which can be used to represent knowledge about uncertain temporal relationships between events and state changes during time. In clinical systems, they were introduced to encode and use the domain knowledge acquired from human experts to perform decision support. A hypothesis that this study plans to investigate is whether temporal abstraction methods can be effectively integrated with DBNs in the context of medical decision-support systems. A preliminary approach is presented where a DBN model is constructed for prognosis of the risk for coronary artery disease (CAD) based on its risk factors and using as test bed a dataset that was collected after monitoring patients who had positive history of cardiovascular disease. The technical objectives of this study are to examine how DBNs will represent the abstracted data in order to construct the prognostic model and whether the retrieved rules from the model can be used for generating more complex abstractions.
机译:时间数据的抽象(TA)旨在将时间点抽象为更高级别的间隔概念,并检测低级别数据和抽象概念中的重要趋势。 TA方法用于汇总和解释临床数据。动态贝叶斯网络(DBN)是时间概率图形模型,可用于表示有关事件和状态随时间变化的不确定时间关系的知识。在临床系统中,它们被引入以编码和使用从人类专家那里获得的领域知识来执行决策支持。这项研究计划进行调查的假设是,在医学决策支持系统的背景下,时间抽象方法是否可以与DBN有效集成。提出了一种初步方法,其中基于其危险因素构建DBN模型以预测冠状动脉疾病(CAD)的风险,并使用在监测患有心血管疾病阳性病史的患者后收集的数据集作为试验床。这项研究的技术目标是检查DBN如何表示抽象数据以构建预测模型,以及从模型中检索到的规则是否可用于生成更复杂的抽象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号