首页> 外文OA文献 >Shrinkage Clustering: A Fast and Size-Constrained Algorithm for Biomedical Applications
【2h】

Shrinkage Clustering: A Fast and Size-Constrained Algorithm for Biomedical Applications

机译:收缩聚类:一种快速且尺寸受限的生物医学应用算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivation: Many common clustering algorithms require a two-step process that limits their efficiency. The algorithms need to be performed repetitively and need to be implemented together with a model selection criterion, in order to determine both the number of clusters present in the data and the corresponding cluster memberships. As biomedical datasets increase in size and prevalence, there is a growing need for new methods that are more convenient to implement and are more computationally efficient. In addition, it is often essential to obtain clusters of sufficient sample size to make the clustering result meaningful and interpretable for subsequent analysis.Results: We introduce Shrinkage Clustering, a novel clustering algorithm based on matrix factorization that simultaneously finds the optimal number of clusters while partitioning the data. We report its performances across multiple simulated and actual datasets, and demonstrate its strength in accuracy and speed in application to subtyping cancer and brain tissues. In addition, the algorithm offers a straightforward solution to clustering with cluster size constraints. Given its ease of implementation, computing efficiency and extensible structure, we believe Shrinkage Clustering can be applied broadly to solve biomedical clustering tasks especially when dealing with large datasets.
机译:动机:许多常见的聚类算法需要两步过程来限制其效率。这些算法需要重复执行,并且需要与模型选择标准一起实施,以便确定数据中存在的簇数和相应的簇成员身份。随着生物医学数据集规模和患病率的增加,对新方法的需求不断增长,这些新方法更易于实施且计算效率更高。此外,获得足够样本量的聚类通常对于使聚类结果有意义并可用于后续分析很有必要。结果:我们引入了收缩聚类,这是一种基于矩阵分解的新颖聚类算法,可以同时找到最佳聚类数分区数据。我们报告了它在多个模拟和实际数据集中的性能,并证明了其在子类型化癌症和脑组织中的准确性和速度方面的优势。另外,该算法为具有簇大小约束的聚类提供了直接的解决方案。鉴于其易于实施,计算效率高和可扩展的结构,我们认为收缩聚类可以广泛应用于解决生物医学聚类任务,尤其是在处理大型数据集时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号