Future mobile and wireless communications networks require flexible modem architectures with high performance. Efficient utilization of application specific flexibility is key to fulfill these requirements. For high throughput a single processor can not provide the necessary computational power. Hence multi-processor architectures become necessary. This paper presents a multi-processor platform based on a new dynamically reconfigurable application specific instruction set processor (dr-ASIP) for the application domain of channel decoding. Inherently parallel decoding tasks can be mapped onto individual processing nodes. The implied challenging inter-processor communication is efficiently handled by a Network-on-Chip (NoC) such that the throughput of each node is not degraded. The dr-ASIP features Viterbi and Log-MAP decoding for support of convolutional and turbo codes of more than 10 currently specified mobile and wireless standards. Furthermore, its flexibility allows for adaptation to future systems.
展开▼