首页> 外文OA文献 >Empirical Bayes Methods for Discrete Event Simulation Performance Measure Estimation
【2h】

Empirical Bayes Methods for Discrete Event Simulation Performance Measure Estimation

机译:离散事件模拟性能测度估计的经验Bayes方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Discrete event simulation (DES) is a widely-used operational research methodology facilitating the analysis of complex real-world systems. Although, generally speaking, simplicity is greatly desirable in DES modelling applications, in many cases the nature of the underlying system results in simulation models which are large in scale, complex, and expensive to run. As such, the careful design and analysis of simulation experiments is essential to ensure valid and efficient inference concerning DES model performance measures. It is envisaged that empirical Bayes (EB) methods, which enable data to be pooled across a set of populations to support inference of the parameters of a single population, may be of use within this context. Despite this potential, EB has so far been neglected within the DES literature. This paper presents a preliminary computational investigation into the efficacy of EB procedures in the estimation of DES performance measures. The results of this investigation, and their significance, are explored. Additionally, likely directions for future research are also addressed.
机译:离散事件模拟(DES)是一种广泛使用的运筹学方法论,有助于对复杂的现实世界系统进行分析。尽管通常来说,在DES建模应用程序中非常需要简单性,但是在许多情况下,底层系统的性质导致仿真模型的规模大,复杂且运行昂贵。因此,精心设计和仿真实验分析对于确保有效,高效地推断DES模型性能指标至关重要。可以设想,在这种情况下可以使用经验贝叶斯(EB)方法,该方法可以将数据汇总到一组总体中以支持对单个总体参数的推断。尽管有这种潜力,但迄今为止,EB一直在DES文献中被忽略。本文介绍了对EB程序在DES绩效评估中的有效性的初步计算研究。探索了该调查的结果及其意义。此外,还探讨了未来研究的可能方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号