首页> 外文OA文献 >Real-Time Monocular Visual Odometry for On-Road Vehicles with 1-Point RANSAC
【2h】

Real-Time Monocular Visual Odometry for On-Road Vehicles with 1-Point RANSAC

机译:具有单点RaNsaC的道路车辆的实时单目视觉测距

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The first biggest problem in visual motion estimation is data association; matched points contain many outliers that must be detected and removed for the motion to be accurately estimated. In the last few years, a very established method for removing outliers has been the "5-point RANSAC" algorithm which needs a minimum of 5 point correspondences to estimate the model hypotheses. Because of this, however, it can require up to thousand iterations to find a set of points free of outliers. In this talk, I will show that by exploiting the non-holonomic constraints of wheeled vehicles (e.g. cars, bikes, mobile robots) it is possible to use a restrictive motion model which allows us to parameterize the motion with only 1 point correspondence. Using a single feature correspondence for motion estimation is the lowest model parameterization possible and results in the most efficient algorithm for removing outliers: 1-point RANSAC.The second problem in monocular visual odometry is the estimation of the absolute scale. I will show that vehicle non-holonomic constraints make it also possible to estimate the absolute scale completely automatically whenever the vehicle turns.In this talk, I will give a mathematical derivation and provide experimental results on both simulated and real data over a large image dataset collected during a 25 Km path.
机译:视觉运动估计中的第一个最大问题是数据关联。匹配点包含许多离群值,必须对其进行检测和删除才能准确估计运动。在最近几年中,一种非常成熟的消除异常值的方法是“ 5点RANSAC”算法,该算法至少需要5点对应关系才能估计模型假设。因此,因此,最多可能需要进行数千次迭代才能找到没有异常值的点集。在本次演讲中,我将展示通过利用轮式车辆(例如汽车,自行车,移动机器人)的非完整约束,可以使用限制性运动模型,该模型允许我们仅通过1点对应关系对运动进行参数化。使用单个特征对应进行运动估计是可能的最低模型参数化,并且是消除异常值的最有效算法:1点RANSAC。单眼视觉测距法的第二个问题是绝对尺度的估计。我将展示车辆非完整的约束条件使它能够在车辆转弯时完全自动地自动估算绝对比例。在25公里的路径上收集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号