首页> 外文OA文献 >Applying Machine Learning Techniques to ASP Solving
【2h】

Applying Machine Learning Techniques to ASP Solving

机译:机器学习技术在asp求解中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Having in mind the task of improving the solving methods for Answer Set Programming (ASP), there are two usual ways to reach this goal: (i) extending state-of-the-art techniques and ASP solvers, or (ii) designing a new ASP solver from scratch. An alternative to these trends is to build on top of state-of- the-art solvers, and to apply machine learning techniques for choosing automatically the "best" available solver on a per-instance basis.In this paper we pursue this latter direction. We first define a set of cheap-to-compute syntactic features that characterize several aspects of ASP programs. Then, given the features of the instances in a training set and the solvers performance on these instances, we apply a classification method to inductively learn algorithm selection strategies to be applied to a test set. We report the results of an experiment considering solvers and training and test sets of instances taken from the ones submitted to the "System Track" of the 3rd ASP competition. Our analysis shows that, by applying machine learning techniques to ASP solving, it is possible to obtain very robust performance: our approach can solve a higher number of instances compared with any solver that entered the 3rd ASP competition.
机译:考虑到改善答案集编程(ASP)的求解方法的任务,有两种通常的方法可以实现该目标:(i)扩展最新技术和ASP求解器,或者(ii)设计一个全新的ASP求解器。这些趋势的替代方法是在最先进的求解器的基础上构建,并应用机器学习技术来根据每个实例自动选择“最佳”可用求解器。在本文中,我们追求后者的方向。我们首先定义了一组廉价的语法功能,这些功能描述了ASP程序的多个方面。然后,考虑到训练集中实例的特征以及这些实例上的求解器性能,我们将分类方法应用于归纳学习要应用于测试集的算法选择策略。我们报告了一个实验结果,该实验考虑了求解器和实例的训练以及测试集,这些实例取自提交给第三届ASP竞赛的“系统跟踪”的实例。我们的分析表明,通过将机器学习技术应用于ASP解决方案,可以获得非常强大的性能:与进入第三届ASP竞赛的任何求解器相比,我们的方法可以解决更多的实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号