首页> 外文OA文献 >Neural Systems for solving the inverse problem of recovering the Primary Signal Waveform in potential transformers
【2h】

Neural Systems for solving the inverse problem of recovering the Primary Signal Waveform in potential transformers

机译:神经系统解决电压互感器恢复初级信号波形的反问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The inverse problem of recovering the potential transformer primary signal waveform using secondary signal waveform and information about the secondary load is solved here via two inverse neural network models. The first model uses two recurrent neural networks trained in an off-line mode. The second model is designed with the use a Dynamic Evolving Neural-Fuzzy Interface System (DENFIS) and suited for on-line application and integration into existing protection algorithms as a parallel module. It has the ability of learning and adjusting its structure in an on-line mode to reflect changes in the environment. The model is suited for real time applications and improvement of protection relay operation. The two models perform better than any existing and published models so far and are useful not only for the reconstruction of the primary signal, but for predicting the signal waveform for some time steps ahead and thus for estimating the drifts in the incoming signals and events.
机译:在此通过两个逆神经网络模型解决了使用次级信号波形和有关次级负载的信息来恢复电压互感器初级信号波形的逆问题。第一个模型使用以离线模式训练的两个递归神经网络。第二种模型是使用动态演化神经模糊接口系统(DENFIS)设计的,适合于在线应用并作为并行模块集成到现有保护算法中。它具有以在线模式学习和调整其结构以反映环境变化的能力。该模型适用于实时应用和保护继电器操作的改进。到目前为止,这两个模型的性能均优于任何现有模型和已发布的模型,不仅可用于重建原始信号,而且可用于预测未来某些时间步长的信号波形,从而用于估计传入信号和事件的漂移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号