首页> 外文OA文献 >Utilizing Typed Dependency Subtree Patterns for Answer Sentence Generation in Question Answering Systems
【2h】

Utilizing Typed Dependency Subtree Patterns for Answer Sentence Generation in Question Answering Systems

机译:利用类型依赖子树模式求解问答系统中的答案句子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Question Answering over Linked Data (QALD) refer to the use of Linked Data by question answering systems, and in recent times this has become increasingly popular as it opens up a massive Linked Data cloud which is a rich source of encoded knowledge. However, a major shortfall of current QALD systems is that they focus on presenting a single fact or factoid answer which is derived using SPARQL (SPARQL Protocol and RDF Query Language) queries. There is now an increased interest in development of human-like systems which would be able to answer questions and even hold conversations by constructing sentences akin to humans. In this paper, we introduce a new answer construction and presentation system, which utilizes the linguistic structure of the source question and the factoid answer to construct an answer sentence which closely emanates a human-generated answer. We employ both semantic Web technology and the linguistic structure to construct the answer sentences. The core of the research resides on extracting dependency subtree patterns from the questions and utilizing them in conjunction with the factoid answer to generate the answer sentence with a natural feel akin to an answer from a human when asked the question. We evaluated the system for both linguistic accuracy and naturalness using human evaluation. These evaluation processes showed that the proposed approach is able to generate answer sentences which have linguistic accuracy and natural readability quotients of more than 70%. In addition, we also carried out a feasibility analysis on using automatic metrics for answer sentence evaluation. The results from this phase showed that the there is not a strong correlation between the results from automatic metric evaluation and the human ratings of the machine-generated answers.
机译:链接数据问题解答(QALD)指的是问题回答系统对链接数据的使用,并且在最近一段时间,由于它打开了庞大的链接数据云,该链接云是编码知识的丰富来源,因此变得越来越流行。但是,当前QALD系统的主要缺陷是它们专注于呈现使用SPARQL(SPARQL协议和RDF查询语言)查询得出的单个事实或事实答案。现在,人们越来越喜欢开发类似于人类的系统,该系统能够通过构建类似于人类的句子来回答问题,甚至进行对话。在本文中,我们介绍了一种新的答案构建和表示系统,该系统利用源问题和事实答案的语言结构来构建一个紧密地表达人为答案的答案句子。我们采用语义Web技术和语言结构来构造答案句子。该研究的核心在于从问题中提取依赖子树模式,并将其与事实答案结合使用,以生成与人类在被问到问题时的答案类似的自然感觉的答案句子。我们使用人工评估对系统的语言准确性和自然性进行了评估。这些评估过程表明,提出的方法能够生成具有超过70%的语言准确性和自然可读性商的答案句子。此外,我们还对使用自动指标进行答卷评估进行了可行性分析。此阶段的结果表明,自动度量标准评估的结果与机器生成的答案的人工评分之间没有强烈的相关性。

著录项

  • 作者

    Perera R; Nand P; Naeem A;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号