首页> 外文OA文献 >Evolving Connectionist Systems for Adaptive Learning and Knowledge Discovery: Trends and Directions
【2h】

Evolving Connectionist Systems for Adaptive Learning and Knowledge Discovery: Trends and Directions

机译:用于自适应学习和知识发现的不断发展的联结主义系统:趋势和方向

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper follows the 25 years of development of methods and systems for knowledge-based neural network systems and more specifically the recent evolving connectionist systems (ECOS). ECOS combine the adaptive/evolving learning ability of neural networks and the approximate reasoning and linguistically meaningful explanation features of symbolic representation, such as fuzzy rules. This review paper presents the classical now hybrid expert systems and evolving neuro-fuzzy systems, along with new developments in spiking neural networks, neurogenetic systems, and quantum inspired systems, all discussed from the point of few of their adaptability, model interpretability and knowledge discovery. The paper discusses new directions for the integration of principles from neural networks, fuzzy systems, bio- and neuroinformatics, and nature in general.
机译:本文关注基于知识的神经网络系统(尤其是最近发展的连接主义系统(ECOS))在方法和系统开发方面的25年发展。 ECOS将神经网络的自适应/不断发展的学习能力与符号表示的近似推理和语言有意义的解释功能(例如模糊规则)结合在一起。这篇综述文章介绍了现在经典的混合专家系统和不断发展的神经模糊系统,以及尖峰神经网络,神经遗传系统和量子启发系统的新发展,所有这些都从它们的适应性,模型可解释性和知识发现中进行了讨论。 。本文讨论了神经网络,模糊系统,生物和神经信息学以及自然界中的原理整合的新方向。

著录项

  • 作者

    Kasabov N;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号