首页> 外文OA文献 >Combined map personalisation algorithm for delivering preferred spatial features in a map to everyday mobile device users
【2h】

Combined map personalisation algorithm for delivering preferred spatial features in a map to everyday mobile device users

机译:组合地图个性化算法,用于将地图中的优选空间特征传递给日常移动设备用户

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, we present an innovative and novel approach to personalise maps/geo-spatial services for mobile users. With the proposed map personalisation approach, only relevant data will be extracted from detailed maps/geo-spatial services on the fly, based on a user’s current location, preferences and requirements. This would result in dramatic improvements in the legibility of maps on mobile device screens, as well as significant reductions in the amount of data being transmitted; which, in turn, would reduce the download time and cost of transferring the required geo-spatial data across mobile networks. Furthermore, the proposed map personalisation approach has been implemented into a working system, based on a four-tier client server architecture, wherein fully detailed maps/services are stored on the server, and upon a user’s request personalised maps/services, extracted from the fully detailed maps/services based on the user’s current location, preferences, are sent to the user’s mobile device through mobile networks. By using open and standard system development tools, our system is open to everyday mobile devices rather than smart phones and Personal Digital Assistants (PDA) only, as is prevalent in most current map personalisation systems. The proposed map personalisation approach combines content-based information filtering and collaborative information filtering techniques into an algorithmic solution, wherein content-based information filtering is used for regular users having a user profile stored on the system, and collaborative information filtering is used for new/occasional users having no user profile stored on the system. Maps/geo-spatial services are personalised for regular users by analysing the user’s spatial feature preferences automatically collected and stored in their user profile from previous usages, whereas, map personalisation for new/occasional users is achieved through analysing the spatial feature preferences of like-minded users in the system in order to make an inference for the target user. Furthermore, with the use of association rule mining, an advanced inference technique, the spatial features retrieved for new/occasional users through collaborative filtering can be attained. The selection of spatial features through association rule mining is achieved by finding interesting and similar patterns in the spatial features most commonly retrieved by different user groups, based on their past transactions or usage sessions with the system.
机译:在本文中,我们提出了一种新颖新颖的方法来为移动用户个性化地图/地理空间服务。使用建议的地图个性化方法,将仅根据用户当前的位置,偏好和要求,从详细的地图/地理空间服务中即时提取相关数据。这将大大改善移动设备屏幕上地图的清晰度,并显着减少传输的数据量;反过来,这将减少下载时间和跨移动网络传输所需地理空间数据的成本。此外,基于四层客户端服务器体系结构,所提出的地图个性化方法已实施到工作系统中,其中,详细的地图/服务存储在服务器上,并且根据用户的请求,从地图中提取个性化的地图/服务。基于用户当前位置,首选项的完全详细的地图/服务将通过移动网络发送到用户的移动设备。通过使用开放和标准的系统开发工具,我们的系统仅对日常移动设备开放,而不是像大多数当前的地图个性化系统中那样,仅对智能手机和个人数字助理(PDA)开放。拟议的地图个性化方法将基于内容的信息过滤和协作信息过滤技术组合到一个算法解决方案中,其中基于内容的信息过滤用于具有存储在系统上的用户配置文件的常规用户,而协作信息过滤用于新的/偶尔有没有用户配置文件存储在系统上的用户。通过分析从以前的使用中自动收集并存储在用户配置文件中的用户空间特征首选项,为常规用户个性化地图/地理空间服务,而新/临时用户的地图个性化是通过分析类似的空间特征首选项实现的。系统中有思想的用户,以便对目标用户进行推断。此外,通过使用关联规则挖掘(一种先进的推理技术),可以实现通过协作过滤为新用户/临时用户检索的空间特征。通过关联规则挖掘对空间特征进行选择是通过根据用户过去的交易或与系统的使用会话,在不同用户组最常检索的空间特征中找到有趣且相似的模式来实现的。

著录项

  • 作者

    Bookwala Avinash Turab;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号