首页> 外文OA文献 >Predicting functional properties of milk powder based on manufacturing data in an industrial-scale powder plant
【2h】

Predicting functional properties of milk powder based on manufacturing data in an industrial-scale powder plant

机译:根据工业规模粉末工厂的制造数据预测奶粉的功能特性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fundamental science relating key physical and functional properties of milk powder to plant operating conditions is complex and largely unknown. Consequently this paper takes a data-driven approach to relate the routinely measured plant conditions to one vital function property known as sediment in an industrial-scale powder plant. Data from four consecutive production seasons was examined, and linear regression models based on a chosen set of processing variables were used to predict the sediment values. The average prediction error was well within the range of the uncertainty of the laboratory test. The models could be used to predict the effect of each individual plant variable on the sediment values which could be beneficial in quality optimisation. In addition the choice of the training data set used to compute regression coefficients was studied and the resultant regression models were compared to alternative PLS models built on the same data.
机译:将奶粉的关键物理和功能特性与工厂运行条件相关的基础科学是复杂的,并且在很大程度上尚不清楚。因此,本文采用数据驱动的方法,将常规测量的工厂条件与一种重要的功能特性(一种工业规模的粉末工厂中的沉积物)联系起来。检查了来自四个连续生产季节的数据,并使用了基于一组选定的处理变量的线性回归模型来预测沉积物值。平均预测误差完全在实验室测试的不确定性范围内。该模型可用于预测每个单独的植物变量对沉积物值的影响,这可能有助于质量优化。此外,还研究了用于计算回归系数的训练数据集的选择,并将所得回归模型与基于相同数据构建的替代PLS模型进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号