首页> 外文OA文献 >Simulating Patho-realistic Ultrasound Images using Deep Generative Networks with Adversarial Learning
【2h】

Simulating Patho-realistic Ultrasound Images using Deep Generative Networks with Adversarial Learning

机译:利用深度生成技术模拟逼真的超声图像   具有对抗性学习的网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Ultrasound imaging makes use of backscattering of waves during theirinteraction with scatterers present in biological tissues. Simulation ofsynthetic ultrasound images is a challenging problem on account of inability toaccurately model various factors of which some include intra-/inter scanlineinterference, transducer to surface coupling, artifacts on transducer elements,inhomogeneous shadowing and nonlinear attenuation. Current approaches typicallysolve wave space equations making them computationally expensive and slow tooperate. We propose a generative adversarial network (GAN) inspired approachfor fast simulation of patho-realistic ultrasound images. We apply theframework to intravascular ultrasound (IVUS) simulation. A stage 0 simulationperformed using pseudo B-mode ultrasound image simulator yields speckle mappingof a digitally defined phantom. The stage I GAN subsequently refines them topreserve tissue specific speckle intensities. The stage II GAN further refinesthem to generate high resolution images with patho-realistic speckle profiles.We evaluate patho-realism of simulated images with a visual Turing testindicating an equivocal confusion in discriminating simulated from real. Wealso quantify the shift in tissue specific intensity distributions of the realand simulated images to prove their similarity.
机译:超声成像利用波在与生物组织中存在的散射体相互作用期间的反向散射。由于无法准确地建模各种因素,因此合成超声图像的仿真是一个具有挑战性的问题,其中一些因素包括内部/内部扫描线干扰,传感器到表面的耦合,传感器元件上的伪影,不均匀的阴影和非线性衰减。当前的方法通常求解波空间方程,从而使它们在计算上昂贵且操作缓慢。我们提出了一种由生成对抗网络(GAN)启发的方法,用于对病态现实超声图像进行快速仿真。我们将框架应用于血管内超声(IVUS)模拟。使用伪B模式超声图像模拟器执行的0级模拟会产生数字定义体模的斑点映射。随后,I GAN阶段对其进行优化,以保留组织特定的斑点强度。 GAN阶段II进一步完善了它们,以生成具有逼真的斑点轮廓的高分辨率图像。我们还量化了真实和模拟图像的组织特定强度分布的偏移,以证明它们的相似性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号