首页> 外文OA文献 >Gridless Two-dimensional DOA Estimation With L-shaped Array Based on the Cross-covariance Matrix
【2h】

Gridless Two-dimensional DOA Estimation With L-shaped Array Based on the Cross-covariance Matrix

机译:基于maTLaB的L形阵列无网格二维DOa估计  交叉协方差矩阵

摘要

The atomic norm minimization (ANM) has been successfully incorporated intothe two-dimensional (2-D) direction-of-arrival (DOA) estimation problem forsuper-resolution. However, its computational workload might be unaffordablewhen the number of snapshots is large. In this paper, we propose two gridlessmethods for 2-D DOA estimation with L-shaped array based on the atomic norm toimprove the computational efficiency. Firstly, by exploiting thecross-covariance matrix an ANM-based model has been proposed. We then provethat this model can be efficiently solved as a semi-definite programming (SDP).Secondly, a modified model has been presented to improve the estimationaccuracy. It is shown that our proposed methods can be applied to both uniformand sparse L-shaped arrays and do not require any knowledge of the number ofsources. Furthermore, since our methods greatly reduce the model size ascompared to the conventional ANM method, and thus are much more efficient.Simulations results are provided to demonstrate the advantage of our methods.
机译:原子范数最小化(ANM)已成功纳入二维(2-D)到达方向(DOA)估计问题中,以实现超分辨率。但是,当快照数量很大时,其计算工作量可能无法承受。本文提出了两种基于原子范数的L型阵列二维DOA估计的无网格方法,以提高计算效率。首先,通过利用互协方差矩阵,提出了一种基于ANM的模型。然后证明了该模型可以作为半定规划(SDP)有效求解。其次,提出了一种改进的模型以提高估计精度。结果表明,我们提出的方法可以应用于均匀和稀疏的L形阵列,并且不需要任何数量的光源知识。此外,由于我们的方法与传统的ANM方法相比极大地减小了模型尺寸,因此效率更高。仿真结果提供了证明我们方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号