首页> 外文OA文献 >Detection of Faults in Power System Using Wavelet Transform and Independent Component Analysis
【2h】

Detection of Faults in Power System Using Wavelet Transform and Independent Component Analysis

机译:基于小波变换和maTLaB的电力系统故障检测  独立成分分析

摘要

Uninterruptible power supply is the main motive of power utility companiesthat motivate them for identifying and locating the different types of faultsas quickly as possible to protect the power system prevent complete power blackouts using intelligent techniques. Thus, the present research work presents anovel method for detection of fault disturbances based on Wavelet Transform(WT) and Independent Component Analysis (ICA). The voltage signal is takenoffline under fault conditions and is being processed through wavelet and ICAfor detection. The time-frequency resolution from WT transform detects thefault initiation instant in the signal. Again, a performance index iscalculated from independent component analysis under fault condition which isused to detect the fault disturbance in the voltage signal. The proposedapproach is tested to be robust enough under various operating scenarios likewithout noise, with 20-dB noise and variation in frequency. Further, thedetection study is carried out using a performance index, energy content, byapplying the existing Fourier transform (FT), short time Fourier transform(STFT) and the proposed wavelet transform. Fault disturbances are detected ifthe energy calculated in each scenario is greater than the correspondingthreshold value. The fault detection study is simulated in MATLAB/Simulink fora typical power system.
机译:不间断电源是电力公司的主要动力,它促使他们尽快识别和定位不同类型的故障,以保护电力系统,并使用智能技术防止电源完全中断。因此,本研究工作提出了一种基于小波变换(WT)和独立分量分析(ICA)的故障检测方法。电压信号在故障情况下脱机,并通过小波和ICA进行处理以进行检测。 WT变换的时频分辨率可检测信号中的故障启动瞬间。同样,通过故障条件下的独立分量分析来计算性能指标,该指标用于检测电压信号中的故障干扰。经过测试,该提议的方法在各种操作场景下(例如无噪声,具有20dB噪声和频率变化)足够鲁棒。此外,通过应用现有的傅立叶变换(FT),短时傅立叶变换(STFT)和提出的小波变换,使用性能指标,能量含量进行检测研究。如果每种情况下计算出的能量大于相应的阈值,则将检测到故障干扰。故障检测研究是在MATLAB / Simulink中对典型电源系统进行仿真的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号