首页> 外文OA文献 >Neural Networks and Chaos: Construction, Evaluation of Chaotic Networks, and Prediction of Chaos with Multilayer Feedforward Networks
【2h】

Neural Networks and Chaos: Construction, Evaluation of Chaotic Networks, and Prediction of Chaos with Multilayer Feedforward Networks

机译:神经网络与混沌:混沌网络的构建,评估,   多层前馈网络的混沌预测与预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many research works deal with chaotic neural networks for various fields ofapplication. Unfortunately, up to now these networks are usually claimed to bechaotic without any mathematical proof. The purpose of this paper is toestablish, based on a rigorous theoretical framework, an equivalence betweenchaotic iterations according to Devaney and a particular class of neuralnetworks. On the one hand we show how to build such a network, on the otherhand we provide a method to check if a neural network is a chaotic one.Finally, the ability of classical feedforward multilayer perceptrons to learnsets of data obtained from a dynamical system is regarded. Various Booleanfunctions are iterated on finite states. Iterations of some of them are provento be chaotic as it is defined by Devaney. In that context, importantdifferences occur in the training process, establishing with various neuralnetworks that chaotic behaviors are far more difficult to learn.
机译:许多研究工作涉及各种应用领域的混沌神经网络。不幸的是,到目前为止,这些网络通常都声称是混沌的,没有任何数学证明。本文的目的是基于严格的理论框架,在根据Devaney的混沌迭代与特定类别的神经网络之间建立等价关系。一方面,我们展示了如何构建这样的网络;另一方面,我们提供了一种方法来检查神经网络是否是一个混沌网络。最后,经典前馈多层感知器学习从动力系统获得的数据集的能力是认为。在有限状态下迭代各种布尔函数。根据Devaney的定义,其中某些迭代被证明是混乱的。在这种情况下,在训练过程中会出现重要的差异,并通过各种神经网络确定混沌行为很难学习。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号