首页> 外文OA文献 >Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering
【2h】

Robust Volume Minimization-Based Matrix Factorization for Remote Sensing and Document Clustering

机译:基于鲁棒体积最小化的遥感图像矩阵分解   和文档聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers \emph{volume minimization} (VolMin)-based structuredmatrix factorization (SMF). VolMin is a factorization criterion that decomposesa given data matrix into a basis matrix times a structured coefficient matrixvia finding the minimum-volume simplex that encloses all the columns of thedata matrix. Recent work showed that VolMin guarantees the identifiability ofthe factor matrices under mild conditions that are realistic in a wide varietyof applications. This paper focuses on both theoretical and practical aspectsof VolMin. On the theory side, exact equivalence of two independently developedsufficient conditions for VolMin identifiability is proven here, therebyproviding a more comprehensive understanding of this aspect of VolMin. On thealgorithm side, computational complexity and sensitivity to outliers are twokey challenges associated with real-world applications of VolMin. These areaddressed here via a new VolMin algorithm that handles volume regularization ina computationally simple way, and automatically detects and {iterativelydownweights} outliers, simultaneously. Simulations and real-data experimentsusing a remotely sensed hyperspectral image and the Reuters document corpus areemployed to showcase the effectiveness of the proposed algorithm.
机译:本文考虑基于\ emph {卷最小化}(VolMin)的结构化矩阵分解(SMF)。 VolMin是一种分解因子标准,它通过查找包围数据矩阵所有列的最小体积单纯形,将给定的数据矩阵分解为基本矩阵乘以结构化的系数矩阵。最近的工作表明,VolMin保证了在各种应用中都可以实现的温和条件下,因子矩阵的可识别性。本文侧重于VolMin的理论和实践方面。从理论上讲,这里证明了两个独立开发的足以实现VolMin可识别性的条件的等价性,从而提供了对VolMin这方面的更全面的理解。在算法方面,计算复杂性和对异常值的敏感性是与VolMin实际应用相关的两个关键挑战。这些通过新的VolMin算法在这里得到解决,该算法以一种计算简单的方式处理体积正则化,并同时自动检测和降低迭代异常值。利用遥感高光谱图像和路透社文献语料库进行仿真和实际数据实验,以证明所提出算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号