首页> 外文OA文献 >Reliable Attribute-Based Object Recognition Using High Predictive Value Classifiers
【2h】

Reliable Attribute-Based Object Recognition Using High Predictive Value Classifiers

机译:基于高可预测值的可靠属性目标识别   分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider the problem of object recognition in 3D using an ensemble ofattribute-based classifiers. We propose two new concepts to improveclassification in practical situations, and show their implementation in anapproach implemented for recognition from point-cloud data. First, the viewingconditions can have a strong influence on classification performance. We studythe impact of the distance between the camera and the object and propose anapproach to fuse multiple attribute classifiers, which incorporates distanceinto the decision making. Second, lack of representative training samples oftenmakes it difficult to learn the optimal threshold value for best positive andnegative detection rate. We address this issue, by setting in our attributeclassifiers instead of just one threshold value, two threshold values todistinguish a positive, a negative and an uncertainty class, and we prove thetheoretical correctness of this approach. Empirical studies demonstrate theeffectiveness and feasibility of the proposed concepts.
机译:我们考虑使用基于属性的分类器集成在3D中进行对象识别的问题。我们提出了两个新概念来改进实际情况中的分类,并在为从点云数据识别中实现的方法中展示了它们的实现。首先,观看条件可能会对分类性能产生很大影响。我们研究了相机与物体之间距离的影响,并提出了一种融合多个属性分类器的方法,该方法将距离纳入了决策。其次,缺乏有代表性的训练样本常常使学习最佳阳性和阴性检出率的最佳阈值变得困难。通过设置属性分类器而不是仅设置一个阈值,两个阈值来区分正,负和不确定性类别,我们解决了这一问题,并证明了该方法的理论正确性。实证研究证明了提出的概念的有效性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号