首页> 外文OA文献 >Scale-constrained Unsupervised Evaluation Method for Multi-scale Image Segmentation
【2h】

Scale-constrained Unsupervised Evaluation Method for Multi-scale Image Segmentation

机译:多尺度图像的尺度约束无监督评估方法   分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Unsupervised evaluation of segmentation quality is a crucial step in imagesegmentation applications. Previous unsupervised evaluation methods usuallylacked the adaptability to multi-scale segmentation. A scale-constrainedevaluation method that evaluates segmentation quality according to thespecified target scale is proposed in this paper. First, regional saliency andmerging cost are employed to describe intra-region homogeneity and inter-regionheterogeneity, respectively. Subsequently, both of them are standardized intoequivalent spectral distances of a predefined region. Finally, by analyzing therelationship between image characteristics and segmentation quality, weestablish the evaluation model. Experimental results show that the proposedmethod outperforms four commonly used unsupervised methods in multi-scaleevaluation tasks.
机译:分割质量的无监督评估是图像分割应用中的关键步骤。先前的无监督评估方法通常缺乏对多尺度分割的适应性。提出了一种尺度约束的评价方法,该方法根据指定的目标尺度对分割质量进行评价。首先,区域显着性和合并成本分别用来描述区域内的同质性和区域间的异质性。随后,将两者均标准化为预定区域的等效光谱距离。最后,通过分析图像特征与分割质量之间的关系,建立评价模型。实验结果表明,该方法在多尺度评估任务中优于四种常用的无监督方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号