首页> 外文OA文献 >Vision-Based Fallen Person Detection for the Elderly
【2h】

Vision-Based Fallen Person Detection for the Elderly

机译:基于视觉的老年人堕落者检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Falls are serious and costly for elderly people. The Centers for DiseaseControl and Prevention of the US reports that millions of older people, 65 andolder, fall each year at least once. Serious injuries such as; hip fractures,broken bones or head injury, are caused by 20% of the falls. The time it takesto respond and treat a fallen person is crucial. With this paper we present anew , non-invasive system for fallen people detection. Our approach uses onlystereo camera data for passively sensing the environment. The key novelty is ahuman fall detector which uses a CNN based human pose estimator in combinationwith stereo data to reconstruct the human pose in 3D and estimate the groundplane in 3D. Furthermore, our system consists of a reasoning module whichformulates a number of measures to reason whether a person is fallen. We havetested our approach in different scenarios covering most activities elderlypeople might encounter living at home. Based on our extensive evaluations, oursystems shows high accuracy and almost no miss-classification. To reproduce ourresults, the implementation is publicly available to the scientific community.
机译:跌倒对于老年人来说是严重的并且代价高昂。美国疾病预防控制中心报告说,每年有数百万的65岁及以上的老年人至少摔倒一次。严重伤害,例如;跌落20%会导致髋部骨折,骨头骨折或头部受伤。应对和治疗堕落者所花费的时间至关重要。通过本文,我们提出了一种新的,非侵入性的用于堕落人员检测的系统。我们的方法仅使用立体相机数据来被动感应环境。关键的新颖之处在于人类跌倒检测器,它结合了基于CNN的人体姿势估计器和立体声数据,可以在3D模式下重建人体姿势并在3D模式下估计地平面。此外,我们的系统还包括一个推理模块,该推理模块可制定多种措施来推理一个人是否跌倒。我们已在涵盖老年人可能在家中遇到的大多数活动的不同场景中测试了我们的方法。根据我们的广泛评估,我们的系统显示出很高的准确性,几乎没有遗漏分类。为了重现我们的结果,该实施方案可供科学界公开使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号