首页> 外文OA文献 >Research on the Multiple Feature Fusion Image Retrieval Algorithm based on Texture Feature and Rough Set Theory
【2h】

Research on the Multiple Feature Fusion Image Retrieval Algorithm based on Texture Feature and Rough Set Theory

机译:基于XmL的多特征融合图像检索算法研究   纹理特征与粗糙集理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, we have witnessed the explosive growth of images with complexinformation and content. In order to effectively and precisely retrieve desiredimages from a large-scale image database with low time-consuming, we proposethe multiple feature fusion image retrieval algorithm based on the texturefeature and rough set theory in this paper. In contrast to the conventionalapproaches that only use the single feature or standard, we fuse the differentfeatures with operation of normalization. The rough set theory will assist usto enhance the robustness of retrieval system when facing with incomplete datawarehouse. To enhance the texture extraction paradigm, we use the wavelet Gaborfunction that holds better robustness. In addition, from the perspectives ofthe internal and external normalization, we re-organize extracted feature withthe better combination. The numerical experiment has verified generalfeasibility of our methodology. We enhance the overall accuracy compared withthe other state-of-the-art algorithms.
机译:最近,我们目睹了具有复杂信息和内容的图像的爆炸式增长。为了高效,准确地从大型图像数据库中检索所需图像,并且耗时少,本文提出了一种基于纹理特征和粗糙集理论的多特征融合图像检索算法。与仅使用单个功能或标准的常规方法相比,我们将不同功能与标准化操作融合在一起。面对不完整的数据仓库时,粗糙集理论将有助于我们增强检索系统的鲁棒性。为了增强纹理提取范例,我们使用具有更好鲁棒性的小波Gabor函数。此外,从内部和外部规范化的角度来看,我们以更好的组合重新组织了提取的特征。数值实验证明了我们方法的普遍可行性。与其他最新算法相比,我们提高了总体准确性。

著录项

  • 作者

    Shi, Xiaojie; Shao, Yijun;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号