首页> 外文OA文献 >Large-Scale Image Retrieval with Attentive Deep Local Features
【2h】

Large-Scale Image Retrieval with Attentive Deep Local Features

机译:具有细分深度局部特征的大规模图像检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose an attentive local feature descriptor suitable for large-scaleimage retrieval, referred to as DELF (DEep Local Feature). The new feature isbased on convolutional neural networks, which are trained only with image-levelannotations on a landmark image dataset. To identify semantically useful localfeatures for image retrieval, we also propose an attention mechanism forkeypoint selection, which shares most network layers with the descriptor. Thisframework can be used for image retrieval as a drop-in replacement for otherkeypoint detectors and descriptors, enabling more accurate feature matching andgeometric verification. Our system produces reliable confidence scores toreject false positives---in particular, it is robust against queries that haveno correct match in the database. To evaluate the proposed descriptor, weintroduce a new large-scale dataset, referred to as Google-Landmarks dataset,which involves challenges in both database and query such as backgroundclutter, partial occlusion, multiple landmarks, objects in variable scales,etc. We show that DELF outperforms the state-of-the-art global and localdescriptors in the large-scale setting by significant margins.
机译:我们提出了一种适合大规模图像检索的细心局部特征描述符,称为DELF(DEep局部特征)。这项新功能基于卷积神经网络,仅在地标图像数据集上使用图像级注释对其进行训练。为了识别在语义上对图像检索有用的局部特征,我们还提出了一种用于关键点选择的注意机制,该机制与描述符共享大多数网络层。该框架可用于图像检索,以替代其他关键点检测器和描述符,从而实现更准确的特征匹配和几何验证。我们的系统会产生可靠的置信度得分以拒绝误报-特别是,它对于数据库中没有正确匹配项的查询具有强大的鲁棒性。为了评估提出的描述符,我们引入了一个新的大规模数据集,称为Google-Landmarks数据集,它涉及数据库和查询方面的挑战,例如背景杂波,部分遮挡,多个地标,可变比例的对象等。我们表明,在大规模设置中,DELF的性能优于最新的全球和本地描述符,且有显着优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号