首页> 外文OA文献 >Joint POS Tagging and Dependency Parsing with Transition-based Neural Networks
【2h】

Joint POS Tagging and Dependency Parsing with Transition-based Neural Networks

机译:基于过渡神经网络的联合pOs标注与依赖解析  网络

摘要

While part-of-speech (POS) tagging and dependency parsing are observed to beclosely related, existing work on joint modeling with manually crafted featuretemplates suffers from the feature sparsity and incompleteness problems. Inthis paper, we propose an approach to joint POS tagging and dependency parsingusing transition-based neural networks. Three neural network based classifiersare designed to resolve shift/reduce, tagging, and labeling conflicts.Experiments show that our approach significantly outperforms previous methodsfor joint POS tagging and dependency parsing across a variety of naturallanguages.
机译:虽然观察到词性(POS)标记和依赖项解析紧密相关,但是现有的有关使用手工制作的特征模板进行联合建模的工作仍存在特征稀疏性和不完整性问题。在本文中,我们提出了一种使用基于过渡的神经网络联合POS标记和依赖项解析的方法。设计了三个基于神经网络的分类器来解决移位/减少,标记和标签冲突。实验表明,我们的方法明显优于以前的方法,可以在各种自然语言中进行POS标记和依赖项解析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号