首页> 外文OA文献 >Combining Keystroke Dynamics and Face Recognition for User Verification
【2h】

Combining Keystroke Dynamics and Face Recognition for User Verification

机译:结合击键动力学和人脸识别进行用户验证

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The massive explosion and ubiquity of computing devices and the outreach ofthe web have been the most defining events of the century so far. As more andmore people gain access to the internet, traditional know-something andhave-something authentication methods such as PINs and passwords are proving tobe insufficient for prohibiting unauthorized access to increasingly personaldata on the web. Therefore, the need of the hour is a user-verification systemthat is not only more reliable and secure, but also unobtrusive andminimalistic. Keystroke Dynamics is a novel Biometric Technique; it is not onlyunobtrusive, but also transparent and inexpensive. The fusion of keystrokedynamics and Face Recognition engenders the most desirable characteristics of averification system. Our implementation uses Hidden Markov Models (HMM) formodelling the Keystroke Dynamics, with the help of two widely used FeatureVectors: Keypress Latency and Keypress Duration. On the other hand, FaceRecognition makes use of the traditional Eigenfaces approach.The results showthat the system has a high precision, with a False Acceptance Rate of 5.4% anda False Rejection Rate of 9.2%. Moreover, it is also future-proof, as thehardware requirements, i.e. camera and keyboard (physical or on-screen), havebecome an indispensable part of modern computing.
机译:迄今为止,计算设备的大规模爆炸和普及以及网络的普及一直是本世纪最具影响力的事件。随着越来越多的人访问Internet,事实证明,诸如PIN和密码之类的传统知识和具有身份验证的方法不足以禁止未经授权的访问,以访问网络上越来越多的个人数据。因此,小时的需求是一个用户验证系统,它不仅更可靠,更安全,而且不引人注目且极简。击键动力学是一种新颖的生物识别技术。它不仅不显眼,而且透明且便宜。击键动力学和人脸识别的融合带来了求平均值系统的最理想特性。我们的实现在两个广泛使用的FeatureVectors(按键延迟和按键持续时间)的帮助下,使用隐马尔可夫模型(HMM)对按键动力学进行了建模。另一方面,FaceRecognition利用传统的Eigenfaces方法,结果表明该系统具有较高的精度,错误接受率为5.4%,错误拒绝率为9.2%。此外,它也是面向未来的,因为硬件要求(即相机和键盘(物理或屏幕上的))已成为现代计算不可或缺的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号