首页> 外文OA文献 >Medical Image Classification via SVM using LBP Features from Saliency-Based Folded Data
【2h】

Medical Image Classification via SVM using LBP Features from Saliency-Based Folded Data

机译:基于sVp的sVm医学图像分类   基于显着性的折叠数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Good results on image classification and retrieval using support vectormachines (SVM) with local binary patterns (LBPs) as features have beenextensively reported in the literature where an entire image is retrieved orclassified. In contrast, in medical imaging, not all parts of the image may beequally significant or relevant to the image retrieval application at hand. Forinstance, in lung x-ray image, the lung region may contain a tumour, hencebeing highly significant whereas the surrounding area does not containsignificant information from medical diagnosis perspective. In this paper, wepropose to detect salient regions of images during training and fold the datato reduce the effect of irrelevant regions. As a result, smaller image areaswill be used for LBP features calculation and consequently classification bySVM. We use IRMA 2009 dataset with 14,410 x-ray images to verify theperformance of the proposed approach. The results demonstrate the benefits ofsaliency-based folding approach that delivers comparable classificationaccuracies with state-of-the-art but exhibits lower computational cost andstorage requirements, factors highly important for big data analytics.
机译:使用支持向量机(SVM)具有局部二进制模式(LBP)作为特征的图像分类和检索方面的良好结果已在文献中广泛报道,其中对整个图像进行了检索或分类。相反,在医学成像中,并非图像的所有部分都可能与手边的图像检索应用程序具有同等的重要性或相关性。例如,在肺部X射线图像中,肺部区域可能包含肿瘤,因此具有很高的意义,而从医学诊断的角度来看,周围区域不包含有意义的信息。在本文中,我们建议在训练过程中检测图像的显着区域并折叠数据以减少无关区域的影响。结果,较小的图像区域将用于LBP特征计算,并因此通过SVM进行分类。我们使用IRMA 2009数据集和14,410张X射线图像来验证所提出方法的性能。结果证明了基于显着性的折叠方法的好处,该方法可提供与最新技术相当的分类精度,但显示出较低的计算成本和存储要求,这对于大数据分析至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号