首页> 外文OA文献 >Nonparametric model checks of single-index assumptions
【2h】

Nonparametric model checks of single-index assumptions

机译:单参数模型的非参数模型检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semiparametric single-index assumptions are convenient and widely useddimen\-sion reduction approaches that represent a compromise between theparametric and fully nonparametric models for regressions or conditional laws.In a mean regression setup, the SIM assumption means that the conditionalexpectation of the response given the vector of covariates is the same as theconditional expectation of the response given a scalar projection of thecovariate vector. In a conditional distribution modeling, under the SIMassumption the conditional law of a response given the covariate vectorcoincides with the conditional law given a linear combination of thecovariates. Several estimation techniques for single-index models are availableand commonly used in applications. However, the problem of testing thegoodness-of-fit seems less explored and the existing proposals still have somemajor drawbacks. In this paper, a novel kernel-based approach for testing SIMassumptions is introduced. The covariate vector needs not have a density andonly the index estimated under the SIM assumption is used in kernel smoothing.Hence the effect of high-dimensional covariates is mitigated while asymptoticnormality of the test statistic is obtained. Irrespective of the fixeddimension of the covariate vector, the new test detects local alternativesapproaching the null hypothesis slower than $n^{-1/2}h^{-1/4},$ where $h$ isthe bandwidth used to build the test statistic and $n$ is the sample size. Awild bootstrap procedure is proposed for finite sample corrections of theasymptotic critical values. The small sample performances of our test comparedto existing procedures are illustrated through simulations.
机译:半参数单指数假设是方便且广泛使用的降维方法,代表了用于回归或条件定律的参数模型与完全非参数模型之间的折衷。在平均回归设置中,SIM假设意味着给定向量的响应的条件期望给定协变量向量的标量投影,协变量的和与响应的条件期望相同。在条件分布建模中,在SIM假设下,给定协变量向量的响应的条件定律与给定协变量的线性组合的条件定律一致。有几种针对单指数模型的估计技术可用,并且通常在应用程序中使用。但是,测试拟合优度的问题似乎很少探讨,并且现有建议仍然存在一些主要缺点。本文介绍了一种新颖的基于内核的SIMassumption测试方法。协变量向量不必具有密度,仅将在SIM假设下估计的指数用于核平滑处理。因此,在获得检验统计量的渐近正态性的同时,减轻了高维协变量的影响。不论协变量向量的固定维数如何,新检验都会检测接近零假设的局部替代方法,其速度慢于$ n ^ {-1/2} h ^ {-1/4},其中$ h $是用于构建检验的带宽统计量,$ n $是样本量。针对渐近临界值的有限样本校正,提出了一种自举程序。通过模拟说明了与现有程序相比我们测试的小样本性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号