首页> 外文OA文献 >A hierarchic multi-level energy method for the control of bi-diagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls
【2h】

A hierarchic multi-level energy method for the control of bi-diagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls

机译:用于控制双对角线的分层多级能量方法   pDE的混合n耦合级联系统通过减少数量的控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work is concerned with the exact controllability/observability ofabstract cascade hyperbolic systems by a reduced number ofcontrols/observations. We prove that the observation of the last component ofthe vector state allows to recover the initial energies of all of itscomponents in suitable functional spaces under a necessary and sufficientcondition on the coupling operators for cascade bi-diagonal systems. Theapproach is based on a multi-level energy method which involves $n$-levels ofweakened energies. We establish this result for the case of bounded as well as unbounded dualcontrol operators and under the hypotheses of partial coercivity of the $n-1$coupling operators on the sub-diagonal of the system. We further extend our observability result to mixed bi-diagonal and nonbi-diagonal $n+p$-coupled cascade systems by $p+1$ observations. Applying theHUM method, we derive the corresponding exact controllability results for$n$-coupled bi-diagonal cascade and $n+p$-coupled mixed cascade systems. Usingthe transmutation method for the wave operator, we prove that the correspondingheat (resp. Schr\"odinger) multi-dimensional cascade systems arenull-controllable for control regions and coupling regions which are disjointfrom each other and for any positive time for $n \le 5$ for dimensions largerthan $2$, and for any $n \ge 2$ in the one-dimensional case. The controls canbe localized on a subdomain or on the boundary and in the one-dimensional casethe coupling coefficients can be supported in any non-empty subset of thedomain.
机译:这项工作与抽象级联双曲系统的精确可控制性/可观察性有关,它通过减少控制/观察的数量来实现。我们证明,矢量状态的最后一个分量的观察允许在级联双对角系统的耦合算子的必要和充分条件下,在适当的功能空间中恢复其所有分量的初始能量。该方法基于一种多级能量方法,该方法涉及n级能量减弱的能量。我们在有界和无界双重控制算子的情况下以及在系统对角线上$ n-1 $耦合算子的部分矫顽力的假设下建立了这个结果。我们通过$ p + 1 $观测值进一步将可观察性结果扩展到混合的双对角线和非对角线的$ n + p $耦合级联系统。应用HUM方法,我们得出了$ n $耦合双对角级联和$ n + p $耦合混合级联系统的相应精确可控性结果。使用波算子的变换方法,我们证明了对于彼此不相交的控制区域和耦合区域以及在任何正时间内,对于$ n \ le,相应的热(分别为Schr \“ odinger)多维级联系统是可空控制的对于大于$ 2 $的维,为5 $,在一维情况下,对于任何$ n \ ge 2 $,控件可以位于子域或边界上,在一维情况下,耦合系数可以在任何非二维情况下得到支持域的空子集。

著录项

  • 作者

    Alabau-Boussouira, Fatiha;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号