首页> 外文OA文献 >A meeting point of entropy and bifurcations in cross-diffusion herding
【2h】

A meeting point of entropy and bifurcations in cross-diffusion herding

机译:交叉扩散放牧中熵和分岔的交汇点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A cross-diffusion system modeling the information herding of individuals isanalyzed in a bounded domain with no-flux boundary conditions. The variablesare the species' density and an influence function which modifies theinformation state of the individuals. The cross-diffusion term may stabilize ordestabilize the system. Furthermore, it allows for a formal gradient-flow orentropy structure. Exploiting this structure, the global-in-time existence ofweak solutions and the exponential decay to the constant steady state is provedin certain parameter regimes. This approach does not extend to all parameters.We investigate local bifurcations from homogeneous steady states analyticallyto determine whether this defines the validity boundary. This analysis showsthat generically there is a gap in the parameter regime between the entropyapproach validity and the first local bifurcation. Next, we use numericalcontinuation methods to track the bifurcating non-homogeneous steady statesglobally and to determine non-trivial stationary solutions related to herdingbehaviour. In summary, we find that the main boundaries in the parameter regimeare given by the first local bifurcation point, the degeneracy of the diffusionmatrix and a certain entropy decay validity condition. We study severalparameter limits analytically as well as numerically, with a focus on the roleof changing a linear damping parameter as well as a parameter controlling thecross-diffusion. We suggest that our paradigm of comparingbifurcation-generated obstructions to the parameter validity ofglobal-functional methods could also be of relevance for many other modelsbeyond the one studied here.
机译:在无磁通边界条件的有界域中分析了建模个人信息聚集的交叉扩散系统。变量是物种的密度和影响函数,这些函数修改了个体的信息状态。交叉扩散项可能会使系统稳定或不稳定。此外,它允许使用正式的梯度流正交结构。利用这种结构,在某些参数范围内证明了弱解的全局存在性以及向恒定稳态的指数衰减。这种方法不能扩展到所有参数。我们分析均质稳态的局部分歧,以确定是否定义了有效性边界。该分析表明,通常在熵方法有效性和第一次局部分歧之间的参数范围中存在差距。接下来,我们使用数值连续方法来全局跟踪分叉的非均匀稳态,并确定与羊群行为相关的非平凡平稳解。总而言之,我们发现参数体制中的主要边界是由第一个局部分叉点,扩散矩阵的简并性和一定的熵衰减有效条件给定的。我们以解析方式和数值方式研究了几个参数极限,重点是改变线性阻尼参数以及控制交叉扩散的参数的作用。我们建议,将分叉产生的障碍物与全局功能方法的参数有效性进行比较的范式也可能与此处研究的其他模型无关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号