首页> 外文OA文献 >Constructing Gazetteers from Volunteered Big Geo-Data Based on Hadoop
【2h】

Constructing Gazetteers from Volunteered Big Geo-Data Based on Hadoop

机译:从基于Hadoop的志愿者大地理数据构建地名录

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditional gazetteers are built and maintained by authoritative mappingagencies. In the age of Big Data, it is possible to construct gazetteers in adata-driven approach by mining rich volunteered geographic information (VGI)from the Web. In this research, we build a scalable distributed platform and ahigh-performance geoprocessing workflow based on the Hadoop ecosystem toharvest crowd-sourced gazetteer entries. Using experiments based on geotaggeddatasets in Flickr, we find that the MapReduce-based workflow running on thespatially enabled Hadoop cluster can reduce the processing time compared withtraditional desktop-based operations by an order of magnitude. We demonstratehow to use such a novel spatial-computing infrastructure to facilitategazetteer research. In addition, we introduce a provenance-based trust modelfor quality assurance. This work offers new insights on enriching futuregazetteers with the use of Hadoop clusters, and makes contributions inconnecting GIS to the cloud computing environment for the next frontier of BigGeo-Data analytics.
机译:传统的地名词典由权威制图机构建立和维护。在大数据时代,通过从网络上挖掘丰富的自愿性地理信息(VGI),可以以数据驱动的方式构建地名词典。在这项研究中,我们基于Hadoop生态系统构建了可扩展的分布式平台和高性能的地理处理工作流,以收集众包的地名词典条目。使用基于Flickr中的geotagged数据集的实验,我们发现,在基于空间的Hadoop集群上运行的基于MapReduce的工作流与基于桌面的传统操作相比,可将处理时间减少一个数量级。我们演示了如何使用这种新颖的空间计算基础架构来促进地名词典研究。此外,我们引入了基于出处的信任模型来保证质量。这项工作为利用Hadoop集群丰富未来的地名词典提供了新的见解,并为将GIS与云计算环境相连接做出了贡献,从而为BigGeo-Data分析的下一个前沿领域做出了贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号