首页> 外文OA文献 >Integrability Conditions for Killing-Yano Tensors and Conformal Killing-Yano Tensors
【2h】

Integrability Conditions for Killing-Yano Tensors and Conformal Killing-Yano Tensors

机译:Killing-Yano张量和保形的可积性条件   Killing-Yano Tensors

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The integrability conditions for the existence of a conformal Killing-Yanotensor of arbitrary order are worked out in all dimensions and expressed interms of the Weyl tensor. As a consequence, the integrability conditions forthe existence of a Killing-Yano tensor are also obtained. By means of suchconditions, it is shown that in certain Einstein spaces one can use a conformalKilling-Yano tensor of order p to generate a Killing-Yano tensor of order(p-1). Finally, it is proved that in maximally symmetric spaces the covariantderivative of a Killing-Yano tensor is a closed conformal Killing-Yano tensorand that every conformal Killing-Yano tensor is uniquely decomposed as the sumof a Killing-Yano tensor and a closed conformal Killing-Yano tensor.
机译:求出维数张量的所有维数并表示为任意阶的共形Killing-Yanotensor的可积性条件。结果,也获得了Killing-Yano张量存在的可积性条件。通过这样的条件,证明了在某些爱因斯坦空间中,可以使用阶为p的共形Killing-Yano张量来生成阶为(p-1)的Killing-Yano张量。最后,证明了在最大对称空间中,Killing-Yano张量的协变导数是一个封闭的共形Killing-Yano张量,并且每个保形的Killing-Yano张量都被唯一分解为Killing-Yano张量和一个封闭的共形Killing-Yano张量。矢野张量。

著录项

  • 作者

    Batista, Carlos;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号