首页> 外文OA文献 >From Landscape to Portrait: A New Approach for Outlier Detection in Load Curve Data
【2h】

From Landscape to Portrait: A New Approach for Outlier Detection in Load Curve Data

机译:从景观到肖像:负荷中离群点检测的新方法   曲线数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In power systems, load curve data is one of the most important datasets thatare collected and retained by utilities. The quality of load curve data,however, is hard to guarantee since the data is subject to communicationlosses, meter malfunctions, and many other impacts. In this paper, a newapproach to analyzing load curve data is presented. The method adopts a newview, termed \textit{portrait}, on the load curve data by analyzing theperiodic patterns in the data and re-organizing the data for ease of analysis.Furthermore, we introduce algorithms to build the virtual portrait load curvedata, and demonstrate its application on load curve data cleansing. Compared toexisting regression-based methods, our method is much faster and more accuratefor both small-scale and large-scale real-world datasets.
机译:在电力系统中,负荷曲线数据是公用事业收集和保留的最重要的数据集之一。但是,负载曲线数据的质量很难保证,因为该数据会遭受通讯损失,仪表故障和许多其他影响。本文提出了一种分析负荷曲线数据的新方法。该方法通过分析数据中的周期性模式并重新组织数据以简化分析,从而在负载曲线数据上采用了一个称为\ textit {portrait}的新视图。此外,我们引入了用于构建虚拟人像负载曲线数据的算法,并且演示其在载荷曲线数据清洗中的应用。与现有的基于回归的方法相比,我们的方法对于小规模和大规模的真实世界数据集都更快,更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号