首页> 外文OA文献 >Adaptive Markov Chain Monte Carlo for Auxiliary Variable Method and Its Application to Parallel Tempering
【2h】

Adaptive Markov Chain Monte Carlo for Auxiliary Variable Method and Its Application to Parallel Tempering

机译:自适应马尔可夫链蒙特卡罗辅助变量法及其应用   并联回火的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Auxiliary variable methods such as the Parallel Tempering and the clusterMonte Carlo methods generate samples that follow a target distribution by usingproposal and auxiliary distributions. In sampling from complex distributions,these algorithms are highly more efficient than the standard Markov chain MonteCarlo methods. However, their performance strongly depends on their parametersand determining the parameters is critical. In this paper, we proposed analgorithm for adapting the parameters during drawing samples and proved theconvergence theorem of the adaptive algorithm. We applied our algorithm to theParallel Tempering. That is, we developed adaptive Parallel Tempering thattunes the parameters on the fly. We confirmed the effectiveness of ouralgorithm through the validation of the adaptive Parallel Tempering, comparingsamples from the target distribution by the adaptive Parallel Tempering andsamples by conventional algorithms.
机译:诸如并行回火和clusterMonte Carlo方法之类的辅助变量方法通过使用提议分布和辅助分布来生成遵循目标分布的样本。从复杂分布中采样时,这些算法比标准的马尔可夫链蒙特卡洛方法要高效得多。但是,它们的性能很大程度上取决于其参数,因此确定参数至关重要。在本文中,我们提出了一种在绘制样本时调整参数的算法,并证明了自适应算法的收敛性定理。我们将算法应用于平行回火。也就是说,我们开发了自适应并行回火,可实时调整参数。我们通过验证自适应并行回火,通过自适应并行回火对目标分布中的样本与常规算法中的样本进行比较,验证了算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号