首页> 外文OA文献 >Magnetic-field-dependent photodynamics of single NV defects in diamond: Application to qualitative all-optical magnetic imaging
【2h】

Magnetic-field-dependent photodynamics of single NV defects in diamond: Application to qualitative all-optical magnetic imaging

机译:金刚石中单个NV缺陷的磁场依赖光动力学:   应用于定性全光磁成像

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Magnetometry and magnetic imaging with nitrogen-vacancy (NV) defects indiamond rely on the optical detection of electron spin resonance (ESR).However, this technique is inherently limited to magnetic fields that are weakenough to avoid electron spin mixing. Here we focus on the high off-axismagnetic field regime for which spin mixing alters the NV defect spin dynamics.We first study in a quantitative manner the dependence of the NV defect opticalproperties on the magnetic field vector B. Magnetic-field-dependenttime-resolved photoluminescence (PL) measurements are compared to a seven-levelmodel of the NV defect that accounts for field-induced spin mixing. The modelreproduces the decreases in (i) ESR contrast, (ii) PL intensity and (iii)excited level lifetime with an increasing off-axis magnetic field. We nextdemonstrate that those effects can be used to perform all-optical magneticimaging in the high off-axis magnetic field regime. Using a scanning NV defectmicroscope, we map the stray field of a magnetic hard disk through both PL andfluorescence lifetime imaging. This all-optical method for high magnetic fieldimaging at the nanoscale might be of interest in the field of nanomagnetism,where samples producing fields in excess of several tens of milliteslas aretypical.
机译:带有氮空位(NV)缺陷的磁强计和磁成像技术依赖于电子自旋共振(ESR)的光学检测,但是,该技术固有地限于弱磁场以避免电子自旋混合。在这里,我们关注于高离轴磁场机制,在该机制下自旋混合改变了NV缺陷的自旋动力学。我们首先以定量方式研究了NV缺陷光学特性对磁场矢量B的依赖性。将光致发光(PL)测量结果与NV缺陷的七级模型进行比较,该模型可以说明场诱导的自旋混合。该模型再现了(i)ESR对比度,(ii)PL强度和(iii)激发水平寿命随轴外磁场的增加而降低的情况。接下来,我们演示了这些效应可用于在高轴外磁场状态下执行全光学磁成像。使用扫描NV缺陷显微镜,我们通过PL和荧光寿命成像来映射硬盘的杂散场。这种在纳米级进行高磁场成像的全光学方法可能会在纳米磁性领域引起人们的兴趣,在纳米磁性领域,样品产生的磁场通常超过几十毫特。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号