首页> 外文OA文献 >Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications
【2h】

Self-consistency over the charge-density in dynamical mean-field theory: a linear muffin-tin implementation and some physical implications

机译:动态平均场理论中电荷密度的自洽性:   线性松饼锡实施和一些物理意义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a simple implementation of the dynamical mean-field theoryapproach to the electronic structure of strongly correlated materials. Thisimplementation achieves full self-consistency over the charge density, takinginto account correlation-induced changes to the total charge density andeffective Kohn-Sham Hamiltonian. A linear muffin-tin orbital basis-set is used,and the charge density is computed from moments of the many bodymomentum-distribution matrix. The calculation of the total energy is alsoconsidered, with a proper treatment of high-frequency tails of the Green'sfunction and self-energy. The method is illustrated on two materials withwell-localized 4f electrons, insulating cerium sesquioxide Ce2O3 and thegamma-phase of metallic cerium, using the Hubbard-I approximation to thedynamical mean-field self-energy. The momentum-integrated spectral function andmomentum-resolved dispersion of the Hubbard bands are calculated, as well asthe volume-dependence of the total energy. We show that full self-consistencyover the charge density, taking into account its modification by strongcorrelations, can be important for the computation of both thermodynamical andspectral properties, particularly in the case of the oxide material.
机译:我们提出了一种动态均值理论方法对强相关材料的电子结构的简单实现。考虑到相关性引起的总电荷密度的变化和有效的Kohn-Sham Hamiltonian,该实现在电荷密度上实现了完全自洽。使用线性松饼-锡轨道基集,并根据许多身体动量分布矩阵的矩来计算电荷密度。还考虑了总能量的计算,对格林函数和自能量的高频尾部进行了适当的处理。使用动态平均场自能的Hubbard-I近似,对两种具有良好局部4f电子的材料(绝缘的三氧化二铈Ce2O3和金属铈的γ相)进行了说明。计算了哈伯德带的动量积分谱函数和动量分辨色散,以及总能量的体积依赖性。我们表明,考虑到强相关性对电荷密度的影响,电荷密度的完全自洽性对于计算热力学和光谱性质都非常重要,特别是在氧化物材料的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号