In a toy model of gauge and gravitational interactions in $D \ge 4$dimensions, endowed with an invariant UV cut-off $\Lambda$, and containing alarge number $N$ of non-self-interacting matter species, the physical gauge andgravitational couplings at the cut-off, $\alpha_g \equiv g^2 \Lambda^{D-4}$ and$\alpha_G \equiv G_N \Lambda^{D-2}$, are shown to be bounded by appropriatepowers of ${1\over N}$. This implies that the infinite-bare-coupling (so-calledcompositeness) limit of these theories is smooth, and can even resemble ourworld. We argue that such a result, when extended to more realistic situations,can help avoid large-N violations of entropy bounds, solve the dilatonstabilization and GUT-scale problems in superstring theory, and provide a newpossible candidate for quintessence.
展开▼
机译:在$ D \ ge 4 $维中的量规和引力相互作用的玩具模型中,具有恒定的UV截止值$ \ Lambda $,并且包含大量$ N $的非自相互作用物质,物理量规截止处的引力耦合$ \ alpha_g \ equiv g ^ 2 \ Lambda ^ {D-4} $和$ \ alpha_G \ equiv G_N \ Lambda ^ {D-2} $被证明受适当的幂限制$ {1 \ N} $。这意味着这些理论的无穷耦合(所谓的复合性)极限是平滑的,甚至可以类似于我们的世界。我们认为,这样的结果,当推广到更现实的情况时,可以帮助避免对熵界限的大N违反,解决超弦理论中的扩张稳定性和GUT尺度问题,并为典型性提供新的可能。
展开▼