首页> 外文OA文献 >A Data Mining Framework for Optimal Product Selection in Retail Supermarket Data: The Generalized PROFSET Model
【2h】

A Data Mining Framework for Optimal Product Selection in Retail Supermarket Data: The Generalized PROFSET Model

机译:零售业最优产品选择的数据挖掘框架   超市数据:广义pROFsET模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In recent years, data mining researchers have developed efficient associationrule algorithms for retail market basket analysis. Still, retailers oftencomplain about how to adopt association rules to optimize concrete retailmarketing-mix decisions. It is in this context that, in a previous paper, theauthors have introduced a product selection model called PROFSET. This modelselects the most interesting products from a product assortment based on theircross-selling potential given some retailer defined constraints. However thismodel suffered from an important deficiency: it could not deal effectively withsupermarket data, and no provisions were taken to include retail categorymanagement principles. Therefore, in this paper, the authors present animportant generalization of the existing model in order to make it suitable forsupermarket data as well, and to enable retailers to add category restrictionsto the model. Experiments on real world data obtained from a Belgiansupermarket chain produce very promising results and demonstrate theeffectiveness of the generalized PROFSET model.
机译:近年来,数据挖掘研究人员开发了用于零售市场篮子分析的有效关联规则算法。零售商仍然经常抱怨如何采用关联规则来优化具体的零售营销组合决策。在此背景下,作者在先前的论文中介绍了一种称为PROFSET的产品选择模型。在某些零售商定义的约束条件下,该模型根据交叉销售的潜力从产品分类中选择最有趣的产品。但是,该模型存在一个重要缺陷:无法有效处理超市数据,也没有采取任何措施来包括零售类别管理原则。因此,在本文中,作者对现有模型进行了重要的概括,以使其也适用于超市数据,并使零售商能够为模型添加类别限制。从比利时超市连锁店获得的现实世界数据的实验产生了非常有希望的结果,并证明了广义PROFSET模型的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号